ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

논문 상세

    셀레늄의 동위원소 희석분석법에서 첨가 스파이크동위원소 76Se, 77Se 및 78Se들의 비교분석

    A comparison study of 76Se, 77Se and 78Se isotope spikes in isotope dilution method for Se

    분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2016, v.29 no.4, pp.170-178
    https://doi.org/10.5806/AST.2016.29.4.170
    김리원 (한국교원대학교 화학교육학과)
    이서영 (한국교원대학교 화학교육학과)
    박용남 (한국교원대학교)
    • 다운로드 수
    • 조회수

    초록

    팔중극자 반응셀을 장착한 사중극자 유도결합플라즈마 질량분광기에서 동위원소 희석법을 사용 하여 셀레늄을 분석할 때에 여러 다른 스파이크 동위원소들 76Se, 77Se, 및 78Se에 대한 정확도와 정밀도를 비교하였다. 무기 셀레늄 표준용액에 대한 분석결과, ID분석법의 정확도는 매일의 결과는 물론 장기간(세 달간)에도 세 개의 스파이크 모두 1 % 이내의 오차만을 보여주었고 %RSD도 1 % 수준이었다. 동위원소 스파이크 76Se, 77Se 은 그 결과값은 비슷하며 78Se이 조금 더 나은 결과를 보여주었다. 하지만 실제시료인 기준물질 NIST SRM 1568a(쌀분말)과 NIST SRM 2967(홍합)에서는 사용하는 스파이크 동위원소에 따라 서로 다른 정확도와 정밀도를 보여주는데 가장 큰 이유는 측정 및 계산에 사용된 m/z에 대한 서로 다른 여러 간섭 때문으로 나타났다. ORC사용으로 인한 SeH의 생성때문에 나타나는 간섭을 보정한 뒤 매트릭스에 포함된 Br, As에 의한 간섭에 대한 보정을 하였다. 결과, 비교적 간단한 매트릭스를가진 쌀분말일 때 76Se, 77Se, 및 78Se은 서로 비슷한 결과를 얻었으며 각 각 80% 정도의 회수율을 꾸준하게 보여주었다. 정밀도는 78Se의 경우에는 1.8% RSD로서 무기표준물의 경우와 비슷하다. 76Se와 77Se 는 각 각 8.6%, 6.3% RSD로서 약간 높지만 전체적으로 이 실험은 신뢰할 수 있다고 보인다. 매트릭스가 복잡한 홍합의 경우에도 76Se와 77Se는 오차가 5 % 이내로서 정확한 결과를 보여주나 정밀도는 RSD 15 % 수준으로 조금 높은 편이다. 하지만 78Se의 경우에는 정확도도 나쁘지만 정밀도가 매우 나빠서(100% 이상의 RSD) 신뢰할 수 없는 결과를 보여준다. 이 는 78Se의 경우, 워낙 Br의 간섭이 크기 때문으로 비록 수학적 보정을 한다하여도 충분하지 않음을 보여준다. 따라서 스파이크 동위원소를 선택할 때에는 매트릭스가 간단하다면 신호가 높은 78Se동위원소를 선택하는 것이 조금 더 유리할 수 있지만 Br이나 간섭이 많을 때는 78Se은 피하고 76Se이나 77Se을 선택하여야 하며 이 경우 충분히 좋은 결과를 보여줄 수 있다.

    keywords
    Se, ID method, Se spikes, ORC ICP/MS, isobaric interference

    Abstract

    Accuracy and precision of ID methods for different spike isotopes of 76Se, 77Se, and 78Se were compared for the analysis of Selenium using quadrupole ICP/MS equipped with Octopole reaction cell. From the analysis of Se inorganic standard solution, all of three spikes showed less than 1 % error and 1 % RSD for both short-term (a day) and long-term (several months) periods. They showed similar results with each other and 78Se showed was a bit better than 76Se and 77Se. However, different spikes showed different results when NIST SRM 1568a and SRM 2967 were analyzed because of the several interferences on the m/z measured and calculated. Interferences due to the generation of SeH from ORC was considered as well as As and Br in matrix. The results showed similar accuracy and precisions against SRM 1568a, which has a simple background matrix, for all three spikes and the recovery rate was about 80% with steadiness. The %RSD was a bit higher than inorganic standard (1.8 %, 8.6 %, and 6.3 % for 78Se, 76Se and 77Se, respectively) but low enough to conclude that this experiment is reliable. However, mussel tissue has a complex matrix showed inaccurate results in case of 78Se isotope spike (over 100 % RSD). 76Se and 77Se showd relatively good results of around 98.6 % and 104.2 % recovery rate. The errors were less than 5 % but the precision was a bit higher value of 15 % RSD. This clearly shows that Br interferences are so large that a simple mathematical calibration is not enough for a complex-matrixed sample. In conclusion, all three spikes show similar results when matrix is simple. However, 78Se should be avoided when large amount of Br exists in matrix. Either 76Se or 77Se would provide accurate results.

    keywords
    Se, ID method, Se spikes, ORC ICP/MS, isobaric interference


    참고문헌

    1

    1. J. T. Daegen, M. A. Beilstein and P. D. Whanger, J. Inorg. Biochem., 41, 261-271 (1991).

    2

    2. H. Koyama, K. Omura, A. Ejima, Y. Kasanuma, C. Watanabe and H. Satoh, Anal. Biochem., 267, 84-91(1999).

    3

    3. M. Roman, P. Jitaru and C. Barbante, Metallomics, 6, 25-54 (2014).

    4

    4. H. A. Meyer, T. Endermann, C. Stephan, M. Stoedter, T. Behrends, I. Wolff, K. Jung and L. Schomburg, PLOS ONE, 7(10), e46644 (2012).

    5

    5. P. Niedzielski and M. Siepak, Polish J. of Environ. Studies, 12(6), 653-667, 2003.

    6

    6. F. jenner, P. Holden, H. Mavrogenes, H. O’Neil and C. Allen, Geostand. Geoanal. Res., 33(3), 309-317 (2009).

    7

    7. L. H. Reyes, J. M. Marchante Gayón, J. I. García Alonso and A. Sanz-Medel, J. Anal. At. Spectrom., 18, 11-16(2003).

    8

    8. N. Yamada, J. Takahashi and K. Sakata, J. Anal. Atom. Spectrom., 17(10), 1213-1222 (2002).

    9

    9. D. Schaumloeffel K. Bier and R. Lobinski, J. Anal. Atom. Spectrom., 22, 318-321 (2007).

    10

    10. T. Shirasaki, J. Yoshinaga, M. Morita, T. Okumoto and K. Oishi, Tohoku J. Exp. Medicine, 178(1), 81-90, (1996).

    11

    11. A. Forrest, R. Kingsley and J. Schiling, Geostand. Geoanal. Res., 33(2), 261-269 (2009).

    12

    12. J. Ahn, H. Kwon and Y. Pak, Anal. Science & Tech., 27(2), 92-99 (2014).

    13

    13. M. Park and Y. Pak, Anal. Science & Tech., 28(6), 417-424 (2015).

    14

    14. H. Cho and Y. Pak, J. Kor. Chem. Soc., 55(3), 472-477(2011).

    15

    15. M. M. Castineira, R. Brandt and A. N. Jakubowski, Fresenius J. Anal. Chem., 370, 553-558 (2001).

    16

    16. K. Cho, C. Park, J. Suh and M. Han, Anal. Science &Tech., 13(3), 297-303 (2000).

    상단으로 이동

    분석과학