ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Effect of particle size of TiO2 and octyl-methoxycinnamate (OMC) content on sun protection factor (SPF)

분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2017, v.30 no.4, pp.159-166
https://doi.org/10.5806/AST.2017.30.4.159
최재영 (한남대학교)
이승호 (한남대학교)
김수연 (한남대학교)
김운중 (한남대학교)
엄철훈 (한국지질자원연구원)
  • 다운로드 수
  • 조회수

Abstract

Exposure to UV light, i.e., UV-A (320-400 nm) or UV-B (290-320 nm) radiation, can cause skin cancer. Titanium dioxide (TiO2) effectively disperses UV light. Therefore, it is used as a physical UV filter in many UV light blockers. Usually, the TiO2 content in commercialized UV blockers is 25 % at most. To block UV-B, a chemical UV blocker, octyl-methoxy cinnamate (OMC) is used. OMC is commonly used in combination with TiO2. In this study, TiO2 and OMC were mixed in different proportions to produce UV blockers with different compositions. Also the changes in the sun protection factor (SPF) based on the composition and TiO2 particle sizes were investigated. In order to analyze the TiO2 particle size, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used. The results showed that the SPF was influenced by the proportion of TiO2 and OMC, where the proportion of TiO2 induced a more significant influence. In addition, changes in the TiO2 particle size based on the proportion of OMC were observed.

keywords
Titanium dioxide (<TEX>$TiO_2$</TEX>), Octyl-methoxy cinnamate (OMC), Sun protection factor (SPF), Asymmetrical flow field-flow fractionation (AF4), Dynamic light scattering (DLS)


참고문헌

1

1. D. R. Hayden, A. Imhof, and K. P. Velikov, ACS Appl. Mater. Inter., 8(48), 32655-32660 (2016).

2

2. G.-S. Sim, J.-H. Kim, Y. Na, D.-H. Lee, B.-C. Lee, Y.-H. Zhang, and H.-B. Pyo, J. Soc. Cosmet. Sci. Korea, 31(4), 329-335 (2005).

3

3. B. A. Gilchrest, N. A. Soter, J. S. Stoff, and M. C. Mihm, J. Am. Acad. Dermatol., 5(4), 411-422 (1981).

4

4. F. M. Vilela, F. M. Oliveira, F. T. Vicentini, R. Casagrande, W. A. Verri, Jr., T. M. Cunha, and M. J. Fonseca, J. Photoch. Photobio. B, 163, 413-420 (2016).

5

5. Y. Yoon, S. Bae, S. An, Y. B. Choe, K. J. Ahn, and I. S. An, Kor. J. Aesthet. Cosmetol., 11(3), 417-426 (2013).

6

6. D.-C. Shin, J.-T. Lee, Y. Chug, N.-K. Kang, and J.-Y. Yang, Environ. Health Toxicol., 11(1), 1-10 (1996).

7

7. S. Miksa, D. Lutz, C. Guy, and E. Delamour, Int. J. Cosmet. Sci., 38(6), 541-549 (2016).

8

8. J. P. Santos Caetano, A. P. Abarca, M. Guerato, L. Guerra, S. Schalka, D. C. Perez Simao, and R. Vila, Int. J. Cosmet. Sci., 38(6), 576-580 (2016).

9

9. S. K. Jeon, E. J. Kim, J. Lee, and S. Lee, J. Hazard. Mater., 317, 312-318 (2016).

10

10. D. Park, H. M. Shahbaz, S. H. Kim, M. Lee, W. Lee, J. W. Oh, D. U. Lee, and J. Park, Int. J. Food Microbiol., 238, 256-264 (2016).

11

11. A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllylä, J. Phys. D: Appl. Phys., 38(15), 2564-2570(2005).

12

12. N. Serpone, D. Dondi, and A. Albini, Inorg. Chim. Acta, 360(3), 794-802 (2007).

13

13. L. A. Baker, L. C. Grosvenor, M. N. R. Ashfold, and V. G. Stavros, Chem. Phys. Lett., 664, 39-43 (2016).

14

14. C.-K. Zhoh, H.-J. Kwon, and S.-R. Ahn, Asia J. Beauty Cosmetol., 9(2), 1-8 (2011).

15

15. A. Samontha, J. Shiowatana, and A. Siripinyanond, Anal. Bioanal. Chem., 399(2), 973-978 (2011).

16

16. C. C. Lin and W. J. Lin, Food and Durg Analysis, 19, 1-8 (2011).

17

17. D. Nesseem, Int. J. Cosmet. Sci., 33(1), 70-79 (2011).

18

18. J. C. Giddings, F. J. F. Yang, and M. N. Myers, Science, 193(4259), 1244-1245 (1976).

19

19. J. C. Giddings, ‘Characterization of colloid-sized and larger particles by field-flow fractionation’, Los Angeles, CA, USA, 156-159 (1988).

20

20. J. C. Giddings, Science, 260(5113), 1456-1465 (1993).

21

21. Martin E. Schimpf, Karin Caldwell, and J. C. Giddings, In ‘Chapter 18. Asymmetrical Flow Field-Flow Fractionation’, pp 279-294, K. G. Wahlund, Ed., Wiley-Interscience, New York, 2000.

22

22. Martin E. Schimpf, Karin Caldwell, and J. C. Giddings, In ‘Chapter 2. Retention-Normal Mode’, pp 31-48, Mark R. Schure, Martin E. Schimpf, and P. D. Schettler, Eds., Wiley-Interscience, New York, 2000.

23

23. Ministry of Food and Drug Safety No. 2012-88(2012.08. 24), Republic of Korea.

24

24. C. H. Eum, D. Y. Kang, and S. Lee, J. Korean Soc. Environ. Anal., 9(4), 243-249 (2006).

25

25. E. J. Kim, M. J. Kim, N. R. Im, and S. N. Park, J. Photoch. Photobio. B, 149, 196-203 (2015).

26

26. S. Schachermeyer, J. Ashby, M. Kwon, and W. Zhong, J. Chromatogr. A, 1264, 72-79 (2012).

27

27. A. Zattoni, D. C. Rambaldi, P. Reschiglian, M. Melucci, S. Krol, A. M. C. Garcia, A. Sanz-Medel, D. Roessner, and C. Johann, J. Chromatogr. A, 1216(52), 9106-9112(2009).

28

28. S. Lee, S. Prabhakara Rao, M. H. Moon, and J. Calvin Giddings, Anal. Chem., 68(9), 1545-1549 (1996).

29

29. J. Choi, H. D. Kwen, Y. S. Kim, S. H. Choi, and S. Lee, Microchem. J., 117, 34-39 (2014).

상단으로 이동

분석과학