Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Regression model for the preparation of calibration curve in the quantitative LC-MS/MS analysis of urinary methamphetamine, amphetamine and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid using R

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2021, v.34 no.6, pp.241-250
    https://doi.org/10.5806/AST.2021.34.6.241


    • Downloaded
    • Viewed

    Abstract

    Calibration curves are essential in quantitative methods and for improving the accuracy of analyte measurements in biological samples. In this study, a statistical analysis model built in the R language (The R Foundation for Statistical Computing) was used to identify a set of weighting factors and regression models based on a stepwise selection criteria. An LC-MS/MS method was used to detect the presence of urinary methamphetamine, amphetamine, and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in a sample set. Weighting factors for the calibration curves were derived by calculating the heteroscedasticity of the measurements, where the presence of heteroscedasticity was determined via variance tests. The optimal regression model and weighting factor were chosen according to the sum of the absolute percentage relative error. Subsequently, the order of the regression model was calculated using a partial variance test. The proposed statistical analysis tool facilitated selection of the optimal calibration model and detection of methamphetamine, amphetamine, and 11-nor-9- carboxy-Δ9-tetrahydrocannabinol in urine. Thus, this study for the selection of weighting and the use of a complex regression equation may provide insights for linear and quadratic regressions in analytical and bioanalytical measurements.

    keywords
    quantification, calibration curve, regression model, weighting factor, bioanalysis


    Reference

    1

    1. N. J. Kwon and E. Han, Forensic Sci. Int., 286, 81-85(2018).

    2

    2. K. Huh, Korean Police Stud. Rev., 17, 291-316 (2018).

    3

    3. J. Caldwell, L. G. Dring and R. T. Williams, Biochem. J., 129, 11-22 (1972).

    4

    4. C. B. Salocks, X. Hui, S. Lamel, P. Qiao, J. R. Sanborn and H. I. Maibach, Food Chem. Toxicol., 50, 4436-4440 (2012).

    5

    5. M. Carvalho, H. Carmo, V. M. Costa, J. P. Capela, H. Pontes, F. Remiao and M. L. Bastos, Arch. Toxicol., 86, 1167-1231 (2012).

    6

    6. K. Purschke, S. Heinl, O. Lerch, F. Erdmann and F. Veit, Anal. Bioanal. Chem., 408, 4379-4388 (2016).

    7

    7. S. Y. Kim, J. Y. Kim, W. Kwon, M. K. In, Y. E. Kim and K. J. Paeng, Microchem. J., 110, 326-333 (2013).

    8

    8. D. K. Lee, M. H. Yoon, Y. P. Kang, J. Yu, J. H. Park, J. Lee and S. W. Kwon, Food Chem., 141, 3931-3937(2013).

    9

    9. J. M. Halket, D. Waterman, A. M. Przyborowska, R. K. P. Patel, P. D. Fraser and P. M. Bramley, J. Exp. Bot., 56, 219-243 (2005).

    10

    10. E. R. Perez, J. A. Knapp, C. K. Horn, S. L. Stillman, J. E. Evans and D. P. Arfsten, J. Anal. Toxicol., 40, 201-207 (2016).

    11

    11. J. C. Miller and J. N. Miller, Analyst, 116, 3-14 (1991).

    12

    12. H. Gu, G. Liu, J. Wang, A. F. Aubry and M. E. Arnold, Anal. Chem., 86, 8959-8966 (2014).

    13

    13. Analytical Methods Committee, Analyst, 119, 2363-2366 (1994).

    14

    14. P. Araujo, J. Chromatogr. B, 877, 2224-2234 (2009).

    15

    15. V. Barwick, Preparation of calibration curves: a guide to best practice, Teddington, UK (2003).

    16

    16. D. A. Ratkowsky and D. E. Giles, Handbook of nonlinear regression models (No. 04; QA278. 2, R3.), M. Dekker, New York (1990).

    17

    17. F. T. Peters, O. H. Drummer and F. Musshoff, Forensic Sci. Int., 165, 216-224 (2007).

    18

    18. B. Desharnais, F. Camirand-Lemyre, P. Mireault and C. D. Skinner, J. Anal. Toxicol., 41, 261-268 (2017).

    19

    19. G. Liu, Q. C. Ji and M. E. Arnold, Anal. Chem., 82, 9671-9677 (2010).

    20

    20. L. Yuan, N. Zheng, M. Jemal and M. E. Arnold, Rapid Commun. Mass Spectrom., 26, 1465-1474 (2012).

    21

    21. L. B. Nilsson and P. Skansen, Rapid Commun. Mass Spectrom., 26, 1399-1406 (2012).

    22

    22. B. Chou, R. S. Adler, M. Meng, S. Percey, B. Dean, C. E. Hop and Y. G. Shin, J. Pharm. Biomed. Anal., 70, 354-361 (2012).

    23

    23. X. Ding, B. Chou, R. A. Graham, S. Cheeti, S. Percey, L. C. Matassa and C. E. C. A. Hop, J. Chromatogr. B, 878, 785-790 (2010).

    24

    24. B. Desharnais, F. Camirand-Lemyre, P. Mireault and C. D. Skinner, J. Anal. Toxicol., 41, 269-276 (2017).

    25

    25. D. C. Montgomery, E. A. Peck and G. G. Vining, Intro duction to linear regression analysis, John Wiley &Sons (2021).

    26

    26. I. Lavagnini and F. Magno, Mass Spectrom. Rev., 26, 1-18 (2007).

    27

    27. B. R. Heo, N. Kwon and J. Y. Kim, Anal. Sci. Technol., 31, 161-170 (2018).

    28

    28. H. Teixeira, A. Verstraete, P. Proenca, F. Corte-Real, P. Monsanto and D. N. Vieira, Forensic Sci. Int., 170, 148-155 (2007).

    29

    29. A. M. Almeida, M. M. Castel-Branco and A. C. Falcao, J. Chromatogr. B, 774, 215-222 (2002).

    상단으로 이동

    Analytical Science and Technology