바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • ENGLISH
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Maternal Influence on Spiderlings' Emergence from the Cocoon: Observations in a Subsocial Spider

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2009, v.32 no.1, pp.33-39
김길원 (인천대학교)

Abstract

Brood caring behavior was observed in Amaurobius ferox (Araneae, Amaurobiidae), a semelparous subsocial spider, from cocoon construction until the emergence of spiderlings from the cocoon. Unlike most spiders, which emerge from cocoon by their own means, A. ferox mothers intervene in the process of the emergence of their young. I manipulated broods by removing the mother prior to emergence to determine the effects of maternal behavior on the emergence of spiderlings. My results showed that maternal intervention making the cocoon expansion and its exit, is not absolutely necessary for the emergence of A. ferox spiderlings from the cocoon. Nine clutches out of ten were able to get out of the cocoon by their own means without their mother's help. There was no difference between control groups ('with mother') and experimental groups ('without mother') in the number of spiderlings that emerged (96.9 ± 25.3 vs. 90.4 ± 14.2, respectfully) and in the time from the beginning to the end of emergence (36 ± 12 vs. 41 ± 17 hours). Time from eclosion until the emergence of the first individual in a clutch, however, was greater in the mother-absent group (3.5 days) than in the control group (2.0 days). The construction of the cocoon by the mother required always occurred in the same area within the retreat, and took approximately 6 hours, and the mother guarded the eggs during the incubation period. The emergence of the spiderlings followed a sigmoidal pattern. After emergence, the spiderlings formed a very compact group on the cocoon, which may be important in securing maternal care. The absence of cribellum and calamistrum, structures likely involved in their survival, observed in individuals of the first instar suggests that in the first stage of life, the spiderlings are dependent on their mother.

keywords
Amaurobius, Brood emergence, Maternal care, Spiderlings, Subsocial

참고문헌

1.

Avilés L. 1997. Cause and consequences of cooperation and permanentsociality in spiders. In The Evolution of Social Behavior in Insects and Arachnids (Choe JC, Crespi BJ, eds). Cambridge Univ Press, Cambridge, pp 476-498.

2.

Bonnet P. 1946. Instinct maternel des araignées à l'épreuve de l'expérimentation. Bull Soc Hist Nat Toulouse 81: 185-250.

3.

Bradoo BL. 1972. Some observations on the ecology of the social spider Stegodyphus sarasinorum (Araneae: Eresidae) from India. Orient Ins 6: 193-204.

4.

Bristowe WS. 1958. The World of Spiders. Collins, London.

5.

Buskirk RE. 1981. Sociality in the Arachnida. In Social Insects, vol Ⅱ (Hermann HR, ed). Academic Press, New York, pp 281-367.

6.

Christenson TE, Wenzl PA. 1980. Egg-laying of the golden silk spider, Nephila clavipes (Araneae, Araneidae): functional analysis of the egg sac. Anim Behav 28: 1110-1118.

7.

Cloudsley-Thompson JL. 1955. The life histories of the British cribellate spiders of the genus Ciniflo Bl. (Dictynidae). Ann Mag Natur Hist 12: 787-794.

8.

D'Andréa M. 1987. Social behaviour in spiders (Arachnida, Araneae). Italian J Zool (Monitore zoologico italiano) N S Monogr pp 151.

9.

Downes MF. 1987. Crossopriza (Lyoni ?) (Araneae, Pholcidae) eats her own eggs. J Arachnol 15: 276.

10.

Eason R. 1964. Maternal care as exhibited by wolf spiders (Lycosidae). Ark Acad Sci Proc 18: 13-19.

11.

Eason R, Whitcomb WH. 1965. Life history of the dotted wolf spider Lycosa punctulata (Araneida; Lycosidae). Ark Acad Sci Proc 19: 11-20.

12.

Eberhard WG. 1977. 'Rectangular orb' webs of Symotaxus (Araneae, Theridiidae). J Nat Hist 22: 45-53.

13.

Engelhardt W. 1964. Die mitteleuropäischen Arten der Gattung Trochosa (Araneae, Lycosidae). Morphologie, Chemotaxonomie, Biologie, Autökologie. J Morpho Ökol Tiere 54: 219-392.

14.

Foelix RF. 1996. Biology of Spiders. Oxford Univ Press, New York.

15.

Fujii Y. 1978. Examinations of the maternal care of cocoon in Pardosa astrigera (Araneae, Lycosidae). Bull Nippon Dental Univ Gen Educ 7: 223-230.

16.

Gundermann JL. 1989. Etudes sur le comportement maternel et son implication dans les phénomènes sub-sociaux chez l'araignée Coelotes terrestris (Wider). Thèse Doct. Univ Nancy I, France.

17.

Gundermann JL, Horel A, Krafft B. 1993. Experimental manipulations of social tendencies in the subsocial spider Coelotes terrestris. Ins Soc 40: 219-229.

18.

Gundermann JL, Horel A, Roland C. 1997. Costs and benefits of maternal care in a subsocial spider, Coelotes terrestris. Ethology 103: 915-925.

19.

Horel A, Krafft B, Aron S. 1996. Processus de la socialisation et préadaptation comportementales chez les araignées sociales. Bull Soc Zool Fr 121: 31-37.

20.

Horel A, Gundermann JL. 1992. Egg sac guarding by the funnel-web spider Coelotes terrestris: function and development. Behav Processes 27: 85-94.

21.

Jacson CC, Joseph KJ. 1973. Life history, bionomics and behaviour of the social spider Stegopyphus sarasinorum Karsch. Ins Soc 20: 189-204.

22.

Kim KW, Horel A. 1998. Matriphagy in the spider Amaurobius ferox (Araneidae, Amaurobiidae): an example of mother-offspring interactions. Ethology 104: 1021-1037.

23.

Kim KW. 2000. Dispersal behaviour in a subsocial spider: group conflict and the effect of food availability. Behav Ecol Sociobiol 48: 182-187.

24.

Kim KW, Roland C. 2000. Trophic egg laying in the spider, Amaurobius ferox: mother-offspring interactions and functional value. Behav Processes 50: 31-42.

25.

Kim KW, Roland C, Horel A. 2000. Functional value of matriphagy in the spider Amaurobius ferox. Ethology 106: 729-742.

26.

Kim KW. 2001. Social facilitation of synchronized molting behavior in the spider Amaurobius ferox (Araneae, Amaurobiidae). J Insect Behav 14: 401-409.

27.

Kim KW, Krafft B, Choe JC. 2005a. Cooperative prey capture by young subsocial spiders: I. Functional value. Behav Ecol Sociobiol 59: 92-100.

28.

Kim, KW, Krafft B, Choe JC. 2005b. Cooperative prey capture by young subsocial spiders: II. Behavioral mechanism. Behav Ecol Sociobiol 59: 101-107.

29.

Krafft B. 1979. Organisation et evolution des sociétés d'araignées. J Psychol 1: 23-51.

30.

Kullmann E. 1972. Evolution of social behavior in spiders (Araneae, Eresidae and Theridiidae). Am Zool 12: 419-426.

31.

Lemasle A. 1977. Etude préliminaire á la biologie et á éthologie des araignées du genre Amaurobius. PhD Thesis, Univ Nancy I, France.

32.

Main BY. 1971. The common colonial spider Ixeuticus candidus (Koch) and its synonyms (Dictynidae, Araneae). J R Soc West Austr 54: 119-120.

33.

Millot J, Bourgin P. 1942. Sur la biologie des Stegodyphus solitaires. Bull Biol Fr Belg 76: 298-313.

34.

Morse DH. 2007. Predator upon a Flower. Harvard University Press, p 377.

35.

Opell BD. 1994. The ability of spider cribellate prey capture thread to hold insects with different surface features. Function Ecol 8: 145- 150.

36.

Plateaux-Quénu C, Horel A, Roland C. 1997. A reflection on social evolution in two different groups of arthropods: halictine bees (Hymenoptera) and spiders (Arachnida). Ethol Ecol Evol 9: 183- 196.

37.

Ramousse R. 1977. Organisation spatio-temporelle du comportement constructeur chez Araneus diadematus. PhD Theses, Univ Lyon, France.

38.

Randall JB. 1977. New observations of maternal care exhibited by the green Lynx spider Peucetia viridans (Araneae, Oxyopidae). Psyche 84: 286-291.

39.

Rovner JS, Higashi GS. 1973. Maternal behavior in wolf spiders: The role of abdominal hairs. Science 182: 1153-1155.

40.

Salomon M, Lubin Y. 2007. Cooperative breeding increases reproductive success in the social spider Stegodyphus dumicola (Araneae, Eresidae). Behav Ecol Sociobiol 61: 1743-1750.

41.

Shaw MR. 1989. Why did a Clubiona reclusa eat her own eggs? Newsl Br Arachnol Soc 56: 6-7.

42.

Shear WA. 1970. The evolution of social phenomena in spiders. Bull Brit Arachnol Soc 1: 65-77.

43.

Smith DR. 1997. Notes on the reproductive biology and social behavior of two sympatric species of Philoponella (Araneae: Uloboridae). J Arachnol 25: 11-19.

44.

Suhm M, Thaler K, Alberti G. 1996. Glands in the male palpal organ and the origin of the mating plug in Amaurobius species (Araneae: Amaurobiidae). Zool Anz 234: 191-199.

45.

Tahiri A, Horel A, Krafft B. 1989. Etude préliminaire sur les interactions mère-jeunes et jeunes-jeunes chez deux espèces d'Amaurobius (Araneae, Amaurobiidae). Rev Arachnol 8: 115-128.

46.

Tietjen WJ. 1986. Social spider webs, with special references to the web of Mallos gregalis. In Spiders - Webs, Behavior and Evolution (Shear WA, ed), Stanford Univ Press, pp 172-206.

47.

Tretzel E. 1961. Biologie, Oekologie und Brutpflege von Coelotes terrestris (Wider) (Araneae, Agelenidae) II. Brutpflege Z Morphol Oekol Tiere 50: 375-542.

48.

Vakanas G, Krafft B. 2001. Coordination of behavioral sequences between individuals during prey capture in a social spider, Anelosimus eximius. J Insect Behav 14: 777-798.

49.

Vannini M, Contini Bonacossi B, Ugolini A. 1982. Cure parentali in Pardosa hortensis Thorell: identificazione ed apertura del bozzolo. Bull Zool 49: 192.

50.

Whitcomb WH, Hite M, Eason R. 1966. Life history of the green lynx spider, Peucetia viridans (Araneida: Oxyopidae). J Kan Entomol Soc 39: 259-267.

51.

Willey M, Coyle F. 1992. Female spiders (Araneae, Dypluridae, Desidae, Linyphidae) eat their own eggs. J Arachnol 20: 151-152

Journal of Ecology and Environment