To clarify the effects of forest fire on the carbon budget of a forest ecosystem, this study compared the seasonal variation of soil respiration, net primary production and net ecosystem production (NEP) over the year in unburned and burned Pinus densiflora forest areas. The annual net carbon storage (i.e., NPP) was 5.75 t C ha-1 in the unburned site and 2.14 t C ha-1 in the burned site in 2012. The temperature sensitivity of soil respiration (i.e., Q10 value) was higher in the unburned site than in the burned site. The annual soil respiration rate was estimated by the exponential regression equation with the soil temperatures continuously measured at the soil depth of 10 cm. The estimated annual soil respiration and het¬erotrophic respiration (HR) rates were 8.66 and 4.50 t C ha-1 yr-1 in the unburned site and 4.08 and 2.12 t C ha-1 yr-1 in the burned site, respectively. The estimated annual NEP in the unburned and burned forest areas was found to be 1.25 and 0.02 t C ha-1 yr-1, respectively. Our results indicate that the differences of carbon budget and cycling between both study sites are considerably correlated with the losses of living plant biomass, insufficient nutrients and low organic materials in the forest soil due to severe damages caused by the forest fire. The burned Pinus densiflora forest area requires at least 50 years to attain the natural conditions of the forest ecosystem prior to the forest fire.
In order to understand the mechanisms of conversion between different algal dominance, an experiment was performed in a greenhouse from 22 June to 10 July 2011. The experiment included a treatment group subjected to three instances of nutrient enrichment and a control with no nutrient enrichment. The initial water was dominated by Ankistrodesmus of Chlorophyta. The average water temperature at 08:30 h and 14:00 h during the experiment was 31.6°C and 34.6°C, respec¬tively. The results showed that the total nitrogen (TN), total phosphorus (TP), dissolved total nitrogen (DTN), dissolved total phosphorus (DTP), and soluble reactive phosphorus (SRP) concentrations in the treatment were significantly higher than in the control (P < 0.05). However, the TN/TP and DTN/DTP in the control was higher than in the treatment (P < 0.05). The dominant algae in the control did not change during the experiment, while the dominant algae in the treat¬ment switched to Planktothrix of Cyanophyta on day 9. The chlorophyll a (Chl-a), wet weight of all algae, wet weight of Cyanophyta, and percentage of Cyanophyta in the control were all significantly lower than in the treatment (P < 0.05). Amounts of zooplankton, especially rotifers, were present at the end of the experimental period. The density of rotifers between the control and treatment was not significantly different (P > 0.05), while the copepod density in the treatment was higher than in the control (P < 0.05). We conclude that green algae dominance quickly switches to cyanobacteria dominance after nutrient enrichment in a greenhouse with elevated temperature
The objectives of this study were to identify multi-level stressors from blood biomarkers to community-level bioindica¬tors and diagnose the stream ecosystem health in polluted streams. Blood chemistry such as total protein (TPro), blood urea nitrogen (BUN), total cholesterol (TCho) and albumin (Alb) were analyzed from sentinel fish tissues; the functions of kidney, gill and liver were significantly decreased in the impacted zone (Iz), compared to the control zone (Cz). Histo¬pathological analysis showed that fish liver tissues were normal in the Cz. Fish liver tissues in the Iz, however, showed large cell necrosis and degeneration and also had moderate lobular inflammation and inflammatory cell infiltration of lymphocytic histocytes. Species biotic index (SBI) at species level and stream health assessment (SHA) at community level indicated that chemical impacts were evident in the Iz (ecological health; poor - very poor), and this was matched with the blood tissue analysis and histopathological analysis. The impairments of the streams were supported by water chemistry analysis (nitrogen, phosphorus). Tolerance guild analysis and trophic guild analysis of fish were showed sig¬nificant differences (P < 0.01) between Cz and Iz. Overall, multiple parameter analysis from biomarker level (blood tissues) to bioindicator level (community health) showed significantly greater impacts in the Iz than Cz. This approach may be effective as a monitoring tool in identifying the multilateral and forthcoming problems related to chemical pollution and habitat degradation of stream ecosystems.
This study investigates the behavioral characteristics and forms of phosphorus in the sediment according to the oxygen condition (aerobic/anaerobic). In the behavioral characteristics analysis, Al-P and Fe-P concentrations were the highest among the forms of inorganic phosphorus, and therefore had the strongest impact on sorption and release correspond¬ing to environmental condition changes. In the experimental investigation of the inorganic forms of phosphorus in the sediment according to the oxygen condition, we determined that the forms of inorganic phosphorus did not greatly affect the sorption or release reaction because the distribution ratios of the inorganic forms remained constant corresponding to changes of dissolved oxygen (DO) conditions. In contrast, the forms of organic phosphorus in the sediments affected both sorption and release. Furthermore, labile-P and moderately labile-P forms were the major mechanisms of sorption in sediment. Moderately labile-P was the greatest contributor to phosphorus release action in sediment. As environmen¬tal changes are important for the behavioral characteristics of phosphorus in sediment, the forms of phosphorus should be considered to have a greater effect, especially in the organic phosphorus case. Therefore, based on the present study results, sediment evaluation aimed at controlling internal pollutants in reservoirs should include an examination of the forms of phosphorus present, as well as the release characteristics of environmental changes, which are influential factors of phosphorus control. Further research in this field is required.
We investigated the current and potential spatial distributions and habitable areas of Biston robustum and Camellia japonica in South Korea in order to provide useful data for the conservation of C. japonica and minimize the damage caused by B. robustum. It was predicted that, by 2070, although B. robustum would be widely distributed throughout the Korean Peninsula, except for the western and eastern coastal areas, it would be narrowly distributed along the Sokcho-si and Goseong-gun coastlines in Gangwon Province. C. japonica is currently located along the southern coastline but its critical habitable area is predicted to gradually disappear by 2070. Assessment of the potential distribution probabilities of B. robustum and C. japonica revealed that the area under the curve (AUC) values were 0.995 and 0.991, respectively, which indicate high precision and applicability of the model. Major factors influencing the potential distribution of B. robustum included precipitation of wettest quarter and annual precipitation (BIO16 and BIO12), whereas annual mean temperature and mean temperature of wettest quarter (BIO1 and BIO8) were important variables for explaining C. japonica distribution. Overlapping areas of B. robustum and C. japonica were 11,782 km2, 5447 km2, and 870 km2 for the current, 2050-predicted, and 2070-predicted conditions, respectively, clearly showing a dramatic decrease in area. Although it is predicted that B. robustum would cause continuous damage to C. japonica in the southern part of the Korean Peninsula, such impacts might diminish over time and become negligible in the future.
This research was conducted to examine the changes in growth and production of Oryza sativa L. cv. Ilmi, which was developed to cultivate high yielding rice variety in the Southern plains of Korea. The seedlings of the rice were cultivated from May to October in 2012 under three different conditions: control, AC-AT, ambient CO2 + ambient temperature; AC-ET, ambient CO2 + elevated temperature; EC-ET, elevated CO2 + elevated temperature. The aboveground biomass, belowground biomass, the total biomass of the rice, and panicle weight per individual were the heaviest in the EC-ET. But, the number of grains per panicle and the weight of one grain was higher at the condition of AC-ET and EC-ET than that of AC-AT. The number of tiller was higher at the condition of AC-AT and AC-ET than that of EC-ET. However, there was no significant difference in the number of panicles per individual and the ripened grain rate among the control and global warming treatments. Crop yield was the highest in the EC-ET. This result means that the global warming condition should be considered in the selection of suitable paddy field for the limibyeo in the future. youeco21@kongju.ac.kr
The landscape setting of a habitat strongly influences the distribution, abundance, and species composition of waterfowl. Thus, habitat assessment is very important to understand the habitat characteristics that sustain waterfowl assemblages. In this study, we hypothesized that the excessive use of artificial materials when new wetlands are constructed negatively influences wintering waterfowl. To test this hypothesis, we measured environmental factors, assessed habitat, and investigated waterfowl at 13 artificial wetlands in the Nakdong River Basin. There were greater numbers of waterfowl species and individuals in artificial wetlands with high habitat assessment scores. In contrast, environmental factors did not affect waterfowl distribution. In particular, features of natural habitats, such as macrophytes and sandbars, and the surrounding land-use patterns were important factors for sustaining waterfowl assemblages in each created wetland. Our results show that promoting naturalness in wetlands and surrounding areas would increase the species diversity and abundance of waterfowl. Further, complex habitats, such as wetlands and some terrestrial habitats, support both aquatic and terrestrial species because mixed habitats feature a larger array of food sources than more limited habitats do.
A survey of weed occurrence was conducted to identify problematic weed species in a horticultural crop field to get basic information for effective weed control. Surveys of weed species occurring in horticultural crop fields (garlic, onion, red pepper and Chinese cabbage) were conducted in Chungnam province of Korea from April to October in 2014. A total of 516 sites of the 17 regions were identified as having 114 weed species belonging to 32 families. The most dominant weed species in the horticultural crop fields were Chenopodium album var. centrorubrum (8.83%), followed by Digitaria ciliaris (5.71%), Conyza canadensis (5.46%) and Capsella bursa-pastoris (4.67%). Specifically, as a result of this study, the occurrence of 35 species of exotic weeds, such as Chenopodium album and Taraxacum officinale, were confirmed. Almost 68% of the investigation sites was determined under dominance value 1 (range of cover < 10; numerous individuals) by Braun-Branquet cover-abundance scale, indicating a proper weed control in horticultural crop field. As a result of scientific and technological advances, an improved cultivation method is changing the weed occurrence in agricultural land. Additional research needs to be undertaken for the development of weed control methods through such periodic monitoring of occurrence of weeds.
We investigated cladoceran fauna from 71 study areas in South Korea. Sixty-two taxa were found, of which there were 30 planktonic and 25 littoral-benthic cladoceran species. In the present study, taxa of cladocera were identified by biographical traits. Species endemic to the Far East were found in the northernmost areas of South Korea, whereas Palearctic species were found in the southernmost areas. Generally, coexistence of cladoceran species in northern and southern areas was observed, implying possible faunistic complexes of cladocera in various areas of South Korea. We believe that further studies conducted in different habitats will greatly expand our knowledge of the biodiversity of cladocera in South Korea.
The aim of this study was to assess the occurrence and foraging of social and other wasps and bees in Jirisan National Park (JNP, South Korea), in particular in an apiary. Sixty one traps were placed in the southwestern part of JNP to identify social wasps from July to September 2014, and the damage to the apiary caused by wasps or bees was observed once a month from May to December 2014 between 10 a.m. and 5 p.m. In total, 10 species of Vespidae were collected by trapping. Vespa crabro was the most abundant (245 individuals, 28.3%), followed by Vespa velutina (162 individuals, 18.7%). In the apiary, however, V. velutina was the most frequent species. V. velutina visited a maximum of 167 times a day in September, which corresponded to one visit in 2.5 min. Accordingly, these data are in line with the most serious impact of V. velutina on the apiaries in South Korea. V. simillima was the second most frequent species; both Vespa species hawked honeybees. Even though the occurrence of V. mandarinia was low, this species caused serious damage by mass slaughter of honeybees. The occurrence of V. crabro, V. analis and V. ducalis was quite low and their impact on honeybees was negligible. There have been few reports of V. dybowskii foraging for honeybees, but they are considered to be a new pest because their impact on apiaries is considerable. Most Vespa species attacked the apiary from June to October, with a maximum in September. However, V. velutina visited until November to early December. Vespula species are not more serious pests than Vespa species, but many adults were observed stealing honey from beehives. Polistes, Orancistrocerus, and Bombus species had no impact on honeybee colonies in the apiary.
We investigated the influence of summer rainfall on Pectinatella magnifica colonies in lotic ecosystems. Of the examined substrate materials, branches and aquatic macrophytes supported more colonies of P. magnifica than that by stones or artificial materials. The influence of rainfall on P. magnifica colonies differed in accordance with the type of substrate material at each study site. In the Geum River, little difference was noted in the number of P. magnifica colonies on branches before (mean ± SE, 24 ± 7.3 individuals) and after rainfall (20 ± 8.4 ind.); other substrate types supported fewer colonies of P. magnifica after rainfall. In contrast, in the Miryang River, rainfall had minimal effect on the number of P. magnifica colonies supported by macrophytes (13 ± 3.8 and 12 ± 4.3 ind., respectively). Artificial material was more abundant in the Banbyeon Stream where it was able to support more colonies of P. magnifica. We found that the structure of different substrates sustains P. magnifica following rainfall. In the Miryang River, free-floating and submerged plants with a relatively heterogeneous substrate surface were the dominant macrophytes, whereas in the Geum River, simple macrophytes (i.e., emergent plants) were dominant. Therefore, we conclude that the substrate type on which P. magnifica grows plays an important role in resisting physical disturbances such as rainfall.
Reservoirs consist of two different environments, the littoral and the pelagic zone, and different fishing gear is commonly used in each zone—gill nets in the pelagic zone and electrofishing in the littoral zone. However, an active fishing gear, the cast net, is normally used instead of electrofishing for scientific studies in South Korea. In order to estimate cast net effectiveness for determining fish status in reservoirs, the study was conducted at 15 reservoirs with two different fishing gears: a cast net in the littoral zone and gill nets in the pelagic zone. When combining catches of both gears, species richness increased substantially compared to using one gear only. There was a size difference in fish caught by each net, and small fish were predominantly caught with the cast net due to its small mesh size (7 mm). The combined length of six species, used for length-weight relationship analysis, collected with the cast net was smaller than that collected with gill nets (independent t-test, P < 0.05). In this study, cast net sampling provided sufficient data for the littoral zone, but not enough to identify the overall fish assemblage in studied reservoirs. Utilization of only one gear can therefore lead to substantial underestimation of fish status, and a combination of both gears is recommended for determining more reliable estimates of fish status in reservoirs.
The composition of the Martes flavigula diet has been extensively studied, but little is known about its insect component. This study characterized the insect diet and insect nest materials in the feces of M. flavigula. A total of 952 fecal samples were collected in Jirisan National Park from January 2009 to November 2011, and 1379 species or taxonomic groups were identified. M. flavigula fed on insects (8.7%) and bee wax (5.0%), which comprised 2.9% and 4.4% of the dry weight of M. flavigula feces, respectively. A total of 12 insect species belonging to 8 families in 3 orders were identified. The most frequently found insects were Hymenoptera (frequency of occurrence, FO, 89.1), including Vespa simillima simillima (FO, 37.3) and Vespula koreensis koreensis (FO, 20.0). The Vespidae constituted the majority of the insect diet in autumn when the diversity of marten’s prey was strongly reduced, probably because the numbers of social insects were sufficient for M. flavigula. In addition, the data suggest that M. flavigula attacks the nests of social wasps in late autumn when males do not have a venomous sting and new queens are less aggressive than workers. Bee wax appeared in all seasons and the highest rate was from spring to early summer. However, the remains of honeybees were not found in feces; thus, M. flavigula presumably eats honey but not honeybees.