open access
메뉴ISSN : 0376-4672
티타늄 및 티타늄 합금은 우수한 기계적 성질과 생체적합성, 그리고 골유착(osseointegration) 특성으로 인해 치과와 정형외과의 임플란트 재료로서 성공적으로 이용되고 있으며, 임상적으로도 높은 성공률을 나타내고 있다1). 또한 최근에는 골유착을 촉진시키기 위하여 임플란트 표면에 조골세포(osteoblast)의초기 부착을 증진시키기 위한 다양한 표면처리들이 연구, 개발되고 있다2~4). 하지만 임플란트 사용이 증가함에 따라 이에 따른 감염으로 인한 임플란트 실패 역시 증가하고 있으며, 이러한 실패를 줄이기 위하여 현재 임플란트의 항균능력을 증진시키려는 연구들이 진행되고 있다5~7). 따라서 이번 연구에서는 티타늄 임플란트의 항균코팅의 동향에 대해서 살펴보고 각각의 특징들을 설명하고자 한다.
Titanium and titanium alloys are the most common materials used for dental and biomedical implants, owing to their biocompatibility and favourable mechanical properties. However infection of the region surrounding a dental implant by pathogenic microorganisms is a significant factor in implant failure. Prevention and control of microbial colonization of implant surfaces is considerable interest to the biomedical community. One important strategy is to render the implant surface antibacterial by impeding the formation of biofilm. A number of approaches have been proposed for this purpose. Therefore, we reviewed the researches of antibacterial coatings on titanium implants in this articles.
1. Ratner D, Hoffman S, Schoen J, Lemons, J. An Introduction to Materials in Medicine: Biomaterials Science. 2nd Edition. Elsevier Academic Press. 2004.
2. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y.Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007; 23: 844-854
3. Daugaard H, Elmengaard B, Bechtold JE, Jensen T, Soballe K. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J Biomed Matter Res A 2009; 92A: 913-921.
4. Kim TI, Jang JH, Kim HW, Knowles JC, Ku Y. Biomimetic approach to dental implants. Curr Pharm Des 2008; 14(22): 2201-2211
5. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med 2004; 350: 1422-1429
6. Harris LG, Richards RG. Staphylococci and implant surfaces: A review. Injury 2006; 37(Suppl 2): S3-S14
7. Stigter M, Bezemer J, de Groot K, Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release 2004; 99: 127-137
8. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Matter Res A 2009; 91B: 470-480
9. Duran LW. Preventing medical device related infections. Med Device Technol 2000; 11: 14-17
10. Radin S, Campbell JT, Ducheyne P, Cuckler JM. Calcium phosphate ceramic coatings as carriers of vancomycin. Biomaterials 1997; 21: 243-249
11. Aebli N, Krebs J, Schwenke D, Stich H, Schawalder P, Theis JC. Degradation of hydroxyapatite coating on a well-functioning femoral component. J Bone Joint Surg Br 2003, 85(4): 499-503
12. Price JS, Tencer AF, Arm DM, Bohach GA. Controlled release of antibiotics from coated orthopedic implants. J Biomed Mater Res 1996; 30: 281-286
13. Gollwitzer H, Ibrahim K, Meyer H, Mittelmeier W, Busch R, Stemberger A. Antibacterial poly(D,Llactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother 2003; 51: 585-591
14. Harris LG, Mead L, Müller-Oberländer E, Richards RG. Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. J Biomed Mater Res 2006; 78A: 50-58
15. Edupuganti OP, Antoci V Jr, King SB, Jose B, Adams CS, Parvizi J, Shapiro IM, Zeiger AR, Hickok NJ, Wickstrom E. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides longterm inhibition of Staphylococcus aureus colonization. Bioorg Med Chem Lett 2007; 17: 2692-2696
16. Antoci V Jr, Adams CS, Parvizi J, Davidson HM, Composto RJ, Freeman TA, Wickstrom E, Ducheyne P, Jungkind D, Shapiro IM, Hickok NJ. The inhibition of Staphylococcus epidermidis biofilms formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials 2008; 29: 4684-4690
17. Wolf J, Sternberg K, Behrend D, Schmitz KP, von Schwanewede H. Drug release of coated dental implant neck region to improve tissue integration. Biomed Tech 2009; 54(4): 219-217
18. Melaiye AYW. Silver and its application as an antimicrobial agent. Expert Opin Ther Pat 2005; 15: 125-130
19. Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hos Infect 2005; 60: 1-7
20. Bosetti M, Massé A, Tobin E, Cannas M. Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials 2002; 23: 887-892
21. Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G. Lack of toxicological side-effects in silver-coated megaprotheses in humans. Biomaterials 2007; 28: 2869-2875
22. Zhang W, Luo Y, Wang H, Jiang J, Pu S, Chu PK. Ag and Ag/N plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Acta Biomater 2008; 4: 2028-2036
23. Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/siver PVD coatings on titanium. Biomed Eng Online 2006; 5: 22
24. Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong J L. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006; 27: 5512-5517
25. Kakoli D, Susmita B, Amit B, Balu K, Bruce L. Gibbins. Surface coating for improvement of bone cell materials and antimicrobial activities of Ti implant. J Biomed Mater Res 2008; 87B: 455-460
26. Nablo BJ, Schoenfisch MH. In vitro cytotoxicity of nitric oxide-releasing sol-gel derived materials. Biomaterials 2005; 26: 4405-4415
27. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997; 15: 323-350
28. Nablo BJ, Rothrock AR, Schoenfisch MH. Nitric oxide-releasing sol-gel as antibacterial coatings for orthopedic implants. Biomaterials 2005; 26: 917-924
29. Hetrick EM, Schoenfisch MH. Antibacterial nitric oxide releasing xerogels: Cell viability and parallel plate flow cell adhesion studies. Biomaterials 2007; 28: 1948-1956
30. Gallardo-Moreno AM, Pacha-Olivenza MA, Saldaña L, Pérez-Giraldo C, Bruque JM, Vilaboa N, González-Martín ML. In vitro biocompatibility and bacterial adhesion of UV irradiation. Acta Biomater 2009; 5: 181-192
31. Legeay G, Poncin-Epaillard F, Arciola CR. New surfaces with hydrophilic /hydrophobic characteristics in relation to (no)bioadhesion. Int J Artif Organs 2006; 29: 453-461
32. Choi JY, Kim KH, Choy KC, Oh KT, Kim KN. Photocatalystic antibacterial effect of TiO2 films formed on Ti and TiAg exposed to Lactobacillus acidophilus. J Biomed Mater Res 2007; 80B: 353-359
33. Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, Ogawa T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009; 30: 1015-1025
34. Del Curto B, Brunella MF, Giordano C, Pedeferri MP, Valtulina V, Visai L, Cigada A. Decreased bacteria adhesion to surface-treated titanium. Int J Artif Organ 2005; 28: 718-730
35. Zhang F, Zhang Z, Zhu X, Kang ET, Neoh KG. Silk-functionalized titanium surface for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 2008; 29: 4751-4759
36. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with nonfunctionalized and peptide-functionalized poly(Llysine)- grafted-poly(ethylene glycol) copolymer. Biomaterials 2004; 25: 4135-4148