바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

메뉴

Can virtual mock crime replace actual mock crime? An event-related potential study

Abstract

For detecting deception research, the Concealed Information Test (CIT) is the most widely used method in conjunction with electroencephalography (EEG). Moreover, mock crime scenarios were commonly adopted for providing materials for lying. Mock crime scenarios have relatively higher ecological validity than other paradigms like autobiographical information or card test. However, current mock crime scenarios also have some limitations because of ethical issues, resource issues, and experimental controllability. Virtual reality (VR) is a potential alternative to overcome the disadvantages. Nonetheless, few studies used VR for mock crime, and there is no research on the comparison between ‘actual’ mock crime and ‘virtual’ mock crime. In the present study, we developed a high-fidelity virtual environment and used it for the virtual mock crime. Participants were randomly assigned both for the Crime status (innocent or guilty) and the Environment mode (actual or VR). After the scenarios, participants were tested by P300-based CIT with EEG recording. To verify the effects of virtual mock crime on subsequent EEG data during CIT, we focused on the P300 event-related component (ERP) and individual classification using the bootstrapping method in the study. As we hypothesized, the main effect of environment mode was not significantly different, and the interaction between stimuli type (target, probe, irrelevant) and environment mode was also not significant when we exclude one outlier. Furthermore, the accuracy of individual classification was equivalent between the actual and the VR. These results were also supported by ROC analysis and equivalence test. All statistical results suggest that there is no significant difference between actual mock crime and virtual mock crime. In conclusion, the study suggests that the virtual mock crime is a potential alternative method for mock crime scenarios.

keywords
Concealed Information Test, Deception, Virtual Reality, Mock Crime, P300

Reference

1.

송인욱, 김혜민, 이경은, 장은희, 김현택 (2018). P300-CIT 부트스트랩 분석 비교. 한국심리학회지: 법, 9(2), 75-99.

2.

Beck, A. T. (1967). Depression: Clinical, experimental, and theoretical aspects (Vol.32):University of Pennsylvania Press

3.

Beck, A. T. (1985). Anxiety disorders and phobias:A cognitive perspective. New York: Basic Books.

4.

Ben-Shakhar, G. (2012). Current research and potential applications of the concealed information test: an overview. Frontiers in psychology, 3, 342.

5.

Ben-Shakhar, G., & Elaad, E. (2003). The validity of psychophysiological detection of information with the Guilty Knowledge Test: A meta-analytic review. Journal of Applied Psychology, 88(1), 131.

6.

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K. M., & Robbins, K. A. (2015). The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in neuroinformatics, 9, 16.

7.

Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS scales. Journal of personality and social psychology, 67(2), 319.

8.

Chaumon, M., Bishop, D. V., & Busch, N. A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of neuroscience methods, 250, 47-63.

9.

Christie, R., Geis, F. L., & Berger, D. (1970). Studies in machiavellianism: Academic Press NewYork.

10.

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21.

11.

Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating?. Behavioral and brain sciences, 11(3), 357-374.

12.

Farwell, L. A., & Donchin, E. (1991). The truth will out: Interrogative polygraphy (“Lie detection”) with Event‐Related brain potentials. Psychophysiology, 28(5), 531-547.

13.

Gamer, M., Bauermann, T., Stoeter, P., & Vossel, G. (2007). Covariations among fMRI, skin conductance, and behavioral data during processing of concealed information. Human brain mapping, 28(12), 1287-1301.

14.

Gamer, M., Verschuere, B., Crombez, G., & Vossel, G. (2008). Combining physiological measures in the detection of concealed information. Physiology & behavior, 95(3), 333-340.

15.

Ganis, G., Kosslyn, S. M., Stose, S., Thompson, W. L., & Yurgelun-Todd, D. A. (2003). Neural correlates of different types of deception: an fMRI investigation. Cerebral cortex, 13(8), 830-836.

16.

Ganis, G., & Schendan, H. E. (2013). Concealed semantic and episodic autobiographical memory electrified. Frontiers in human neuroscience, 6, 354.

17.

Gao, J. F., Yang, Y., Huang, W. T., Lin, P., Ge, S., Zheng, H. M., ..., & Rao, N. N. (2016). Exploring time-and frequency-dependent functional connectivity and brain networks during deception with single-trial event-related potentials. Scientific reports, 6, 37065.

18.

Hahm, J., Ji, H. K., Jeong, J. Y., Oh, D. H., Kim, S. H., Sim, K. B., & Lee, J. H. (2009). Detection of concealed information:combining a virtual mock crime with a P300-based Guilty Knowledge Test. Cyberpsychology & behavior, 12(3), 269-275.

19.

Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology, 3(3), 203-220.

20.

Knowles, E. S., Cutter, H. S., Walsh, D. H., & Casey, N. A. (1973). Risk-taking as a personality trait. Social Behavior and Personality:an international journal, 1(2), 123-136.

21.

Kugelmass, S., & Lieblich, I. (1966). Effects of realistic stress and procedural interference in experimental lie detection. Journal of Applied Psychology, 50(3), 211.

22.

Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence testing for psychological research:A tutorial. Advances in Methods and Practices in Psychological Science, 1(2), 259-269.

23.

Lee, T. M., Liu, H. L., Tan, L. H., Chan, C. C., Mahankali, S., Feng, C. M., ..., & Gao, J. H. (2002). Lie detection by functional magnetic resonance imaging. Human brain mapping, 15(3), 157-164.

24.

Leng, B., Wang, X., Cao, B., & Li, F. (2017). Frontal negativity: An electrophysiological index of interpersonal guilt. Social neuroscience, 12(6), 649-660.

25.

Lilienfeld, S. O., & Widows, M. R. (2005). Psychological assessment inventoryrevised (PPI-R). Lutz, FL: Psychological Assessment Resources.

26.

Luck, S. J. (2014). An introduction to the event-related potential technique. MIT press.

27.

McNeil, B. J., & Hanley, J. A. (1984). Statistical approaches to the analysis of receiver operating characteristic (ROC) curves. Medical decision making, 4(2), 137-150.

28.

Mertens, R., & Allen, J. J. (2008). The role of psychophysiology in forensic assessments:Deception detection, ERPs, and virtual reality mock crime scenarios. Psychophysiology, 45(2), 286-298.

29.

Park, H. D., Correia, S., Ducorps, A., & Tallon-Baudry, C. (2014). Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nature neuroscience, 17(4), 612.

30.

Peth, J., Vossel, G., & Gamer, M. (2012). Emotional arousal modulates the encoding of crime‐related details and corresponding physiological responses in the Concealed Information Test. Psychophysiology, 49(3), 381-390.

31.

Proverbio, A. M., Vanutelli, M. E., & Adorni, R. (2013). Can you catch a liar? How negative emotions affect brain responses when lying or telling the truth. PloS one, 8(3), e59383.

32.

Rosenfeld, J. P. (Ed.). (2018). Detecting concealed information and deception: Recent developments. Academic Press.

33.

Rosenfeld, J. P., Biroschak, J. R., & Furedy, J. J. (2006). P300-based detection of concealed autobiographical versus incidentally acquired information in target and non-target paradigms. International Journal of Psychophysiology, 60(3), 251-259.

34.

Rosenfeld, J. P., Labkovsky, E., Winograd, M., Lui, M. A., Vandenboom, C., & Chedid, E. (2008). The Complex Trial Protocol (CTP): A new, countermeasure‐resistant, accurate, P300based method for detection of concealed information. Psychophysiology, 45(6), 906-919.

35.

Rosenfeld, J. P., Soskins, M., Bosh, G., & Ryan, A. (2004). Simple, effective countermeasures to P300‐based tests of detection of concealed information. Psychophysiology, 41(2), 205-219.

36.

Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in cognitive sciences, 11(6), 251-257.

37.

Sartori, G., Agosta, S., Zogmaister, C., Ferrara, S. D., & Castiello, U. (2008). How to accurately detect autobiographical events. Psychological science, 19(8), 772-780.

38.

Schoonjans, F. R. A. N. K., Zalata, A., Depuydt, C. E., & Comhaire, F. H. (1995). MedCalc: a new computer program for medical statistics. Computer methods and programs in biomedicine, 48(3), 257-262.

39.

Shams, L., & Seitz, A. R. (2008). Benefits of multisensory learning. Trends in cognitive sciences, 12(11), 411-417.

40.

Snyder, M., & Gangestad, S. (1986). On the nature of self-monitoring: Matters of assessment, matters of validity. Journal of personality and social psychology, 51(1), 125.

41.

Soltani, M., & Knight, R. T. (2000). Neural origins of the P300. Critical Reviews™ in Neurobiology, 14(3-4).

42.

Soskins, M., Rosenfeld, J. P., & Niendam, T. (2001). Peak-to-peak measurement of P300recorded at 0.3 Hz high pass filter settings in intraindividual diagnosis: complex vs. simple paradigms. International Journal of Psychophysiology, 40(2), 173-180.

43.

Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24(6), 1656.

44.

Wang, H., Chang, W., & Zhang, C. (2016). Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection. Expert Systems with Applications, 53, 117-128.

45.

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of personality and social psychology, 54(6), 1063.

46.

Wilding, E. L. (1999). Separating retrieval strategies from retrieval success: An event-related potential study of source memory. Neuropsychologia, 37(4), 441-454.

47.

Zaitsu, W. (2016). External validity of Concealed Information Test experiment: comparison of respiration, skin conductance, and heart rate between experimental and field card tests. Psychophysiology, 53(7), 1100-1107.

logo