바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

굴, 김 및 조피볼락에서 다환성방향족탄화수소(polycyclic aromatic hydrocarbons, PAHs)의 잔류에 미치는 요인에 대한 연구

Factors affecting concentration of polycyclic aromatic hydrocarbons in oyster, laver and rockfish

초록

각각 20 시료씩 최대한 다양한 산지에서 생산된 것으로 추정되는 참굴, 김 및 조피볼락을 시중에서 수집하여 이들 수산 식품에 존재하는 15 종의 다환성 방향족 탄화수소류 (polycyclic aromatic hydrocarbons, PAHs)의 잔류량을 분석하였다. 그 결과 1종의 PAHs라도 발견되는 시료의 비율은 참굴 전육질부(75%), 조피볼락 간췌장(35%), 조피볼락 근육(0%), 건조 김(0%) 순이었다. 이런 차이가 나타나도록 영향을 미치는 요인을 분석하기 위해 실험실에서 대표적 PAHs의 하나인 phenanthrene을 이 세 종의 생물에 0.01 및 <TEX>$0.1{\mu}g/mL$</TEX>의 농도로 2주간 노출시켰다. 참굴의 소화선, 김, 조피볼락의 간췌장에서 높은 축적성이 관찰되었지만 굴의 전 육질부(소화선 포함)나 조피볼락의 근육에서는 낮은 축적성이 관찰되었다. 생물 종간의 실험실 노출에서의 축적성 차이와 시중 시료에서 발견된 잔류성 차이는 관련성이 거의 없었다. PAHs는 소수성이 강한 물질이기 때문에 생물 종간 지방 함량을 분석하여 지방함량이 PAHs 축적성에 관련되는 지를 평가하였다. 조피볼락의 간췌장이 근육에 비해 지질 함량이 높았고 phenanthrene 축적성도 높은 것으로 조사되어 조피볼락에서 지질 함량이 간췌장으로의 PAHs의 축적에 어느 정도 기여하는 것으로 추정되었지만 다른 생물에서는 지질 함량에 따른 phenanthrene 축적성 차이가 없었다. 또한 PAHs 대사를 통한 배설 정도를 평가하기 위해 cytochrome <TEX>$P_{450}$</TEX> 효소의 하나인 7-ethyoxyresorufin-O-deethylase(EROD)의 활성을 분석한 결과, 조피볼락에서는 참굴 보다 EROD 활성이 훨씬 높게 나타나 조피볼락에서 참굴보다 PAHs의 제거가 더 활발하였음을 추정할 수 있었고 그 결과로 인해 조피볼락에서 상대적으로 PAHs 검출 빈도를 낮게 나타난 것으로 추정된다. 그러나 본 연구에서 분석되지 않은 인자들 예를 들면, 생물간 노출 조건의 차이, 도피 능력, 섭이를 통한 축적 및 가공 과정에서의 소실 등에 대한 평가는 더 조사해야 할 부분이다.

keywords
Oyster, Laver, Rockfish, PAHs, Phenanthrene, Concentration, Lipid, EROD activity, Oyster, Laver, Rockfish, PAHs, Phenanthrene, Concentration, Lipid, EROD activity

Abstract

A total of 15 different residues of polycyclic aromatic hydrocarbons (PAHs) were analyzed in 20 samples each of Pacific oysters, dried laver and rockfish obtained from seafood markets. The prevalence of samples in which more than one PAH residues were found ranked as oyster (75%) > rock fish hepatopancreas (35%) > rockfish muscle = laver (0%). To estimate factors contributing to this residue level difference among organisms, at first the three organisms were exposed to phenanthrene, a representative PAH, in the laboratory experiments at 0.01 or 0.1 μg/ml for 2 weeks and tissue concentrations were analyzed. Phenanthrene levels after exposure were higher in the oyster digestive gland, laver and rockfish hepatopancreas, and in contrast they were lower in the oyster whole meat or rockfish muscle. This finding disproves any close relationship between the residue difference observed in market samples and concentrating properties of PAHs. The second possible factor analyzed was total lipid contents in the three organisms. The higher lipid levels in rockfish hepatopancreas may partially explain higher PAH residues in this organ compared to its muscle, however, such lipid factor does not seem to be important in other organism samples. The third factor estimated was the assessment of cytochrome P450 enzyme activity by measuring 7-ethyoxyresorufin-O-deethylase (EROD) activity. Higher EROD activity in rockfish is likely to contribute to lower PAH residue levels in market rockfish samples, in particular when compared to oyster samples. Factors other than examined in this study, e.g., different exposure history, organisms' ability to escape, ingestion through prey organisms, and post-harvest loss should be the research in the future studies. In summary, significance lies in the fact that the authors attempted for the first time to assess factors contributing to residence of PAHs in three major seafoods consumed by Koreans.

keywords
oyster, laver, rockfish, PAHs, phenanthrene, concentration, lipid, EROD activity

참고문헌

1.

Aas Endre, (1998) PAH metabolites in bile and EROD activity in North Sea fish, Marine Environonmental Research

2.

Brezeznicki, S, (1996) Determination of polycyclic aromatic hydrocarbons in the working environment during aluminum production, Medical Practices

3.

Brunson, E.L, (1998) Assessing the bioaccumulation of contaminants from sediments of the upper Mississippi River using field-collected oligochaetes and laborotory-exposed Lumbriculus variegatus, Archives of Environmental Contamination and Toxicology

4.

Escartin, E, (1999) Hydroxylated PAHs in biles of deep-sea fish: relationship with xenobiotic metabolizing enzymes, Environmental Science and Technology

5.

Hellou, J, (1994) Bioaccumulation of aromatic hydrocarbons from sediments: a dose-response study with flounder (Pseudopleuronectus americanus), Archives of Environmental Contamination and Toxicology

6.

Kagi, R, (1985) Polycyclic aromatic hydrocarbons in rock oysters: a baseline study, International Journal of Environmental Analytical Chemistry

7.

Kirso, U, (1998) Role of algae in fate of carcinogenic polycyclic aromatic hydrocarbons in the aquatic environment, Ecotoxicology and Environmental Safety

8.

Lawrence, J.F, (1986) Determination of nanogram/kilogram levels of polycyclic aromatic hydrocarbons in foods by HPLC with fluorescence detection, International Journal of Environmental Analytical Chemistry

9.

Lowry, O.H, (1951) Protein measurement with folin phenol reagent, Journal of Biological Chemistry

10.

Ma, W.C, (1995) Earthworm and food interactions on bioaccumulation and disappearance in soil of polycyclic aromatic hydrocarbons: studies on phenanthrene and fluoranthene, Ecotoxicology and Environmental Safety

11.

Matheson, R.A.F, (1983) Investigation of polynuclear aromatic hydrocarbon contamination of Sydney Harber, Nova Scotia. Surveillance Research EPS-AR-83-6, Environmental Protection Service, Environment Canada, Dartmouth, Nova Scotia

12.

Meador, J.P, (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms, Reviews of Environmental Contamination and Toxicology

13.

Neff, J.M, (1980) Polycyclic aromatic hydrocarbons in the aquatic environment, Applied Science, London.

14.

Phillips,D.H, (1983) Fifty years of benzo(a)pyrene, Nature

15.

Ren, L, (1994) Photoinduced toxicity of three polycyclic aromatic hydrocarbons (fluoranthene, pyrene, and naphthalene) to the duckweed Lemna gibba L. G-3, Ecotoxicology and Environmental Safety

16.

Sanders,M, (1995) Distribution of polycyclic aromatic hydrocarbons in oyster (Crassostrea virginica) and surface sediment from two estuaries in South Carolina, Archives of Environmental Contamination and Toxicology

17.

Stagg, R, (1998) Biological effects of contaminants: determination of CYP1A-dependent mono-oxygenase activity in dab by fluorometric measurement of EROD activity, ICES Technology Marine Environmental Sciences

18.

Thorsen, W.A, (2004) Elimination rate constants of 46 polycyclic aromatic hydrocarbons in the unionid mussel, Elliption complanata, Archives of Environmental Contamination and Toxicology

19.

Van Hattum, B, (1998) Polycyclic aromatic hydrocarbons in freshwater isopods and field-partitioning between abiotic phases, Archives of Environmental Contamination and Toxicology

20.

환경처보고서, (1992) 수질환경기준 및 배출허용기준 적정화 연구,

logo