바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

굴 Crassostrea gigas 유생 성장단계별 미세조류 12의 소화도

Digestion indices of 12 species of microalgae by the oyster Crassostrea gigas larval development stages

초록

굴 인공종묘생산 시 적정 먹이생물을 선택하기 위하여 먹이생물로 이용되고 있는 12종의 미세조류를 대상으로 굴 유생의 소화도를 조사하였다. 조사는 유생의 발달단계에 따라 D형 유생, 초기각정기 유생, 각정기 유생 및 부착기 유생으로 구분하여 수용적 1L 수조에 5 마리/mL 밀도로 각각의 성장단계별 유생을 수용하고, 조사대상 먹이생물 12종을 각각 투여하였다. 소화도 측정은 먼저 12종의 먹이생물을 공급 후 3시간 동안 충분히 섭취하도록 방치한 후 먹이섭취 상태를 현광현미경으로 확인하였다. 이 후 유생은 걸름망으로 걸러 여과해수가 채워진 비이커에 재 수용 후 3,5 및 8시간 후 소화도를 현광현미경으로 측정하였다. 12종 미세조류의 소화도는 유생의 발달단계에 따라 다양했다. 전 유생기 동안 Thalassiosira weissflogii는 섭취가 관찰되지 않았고, 나머지 종의 소화도는 유생의 발달단계에 따라 0.8-99.7%: Chlorella ellipsoidea (0.8-5.4%), Nannochloris oculata (1.4-5.0%), Isochrysis galbana (99.1-99.5%), Pavlova lutheri (99.1-99.5%), I. aff. galbana (99.4-99.5%), Cheatoceros calcitrans (0.0-99.2%), C. gracilis (0.0-99.7%), C. simplex (0.0-95.9%), Phaeodactylum tricornutum (0.0-99.6%), Tetraselmis tetrathele (0.0-99.7%) 그리고 Dunaliella tertiolecta (0.0-99.6%)로 나타났다. 따라서 초기 유생은 I. galbana와 같이 소화성이 높은 것을 공급하고 각정기 이후 규조류 또는 담녹조류를 혼합해 주는 것이 소화성을 높일 수 있을 것으로 판단된다.

keywords
Digestion index, Epifluorescence microscopy, oyster, Crassostrea gigas, microalgae, larval development.

Abstract

굴 인공종묘생산 시 적정 먹이생물을 선택하기 위하여 먹이생물로 이용되고 있는 12종의 미세조류를 대상으로 굴 유생의소화도를 조사하였다. 조사는 유생의 발달단계에 따라 D형 유생, 초기각정기 유생, 각정기 유생 및 부착기 유생으로 구분하여 수용적 1L 수조에 5 마리/mL 밀도로 각각의 성장단계별유생을 수용하고, 조사대상 먹이생물 12종을 각각 투여하였다. 소화도 측정은 먼저 12종의 먹이생물을 공급 후 3시간 동안충분히 섭취하도록 방치한 후 먹이섭취 상태를 현광현미경으로 확인하였다. 이 후 유생은 걸름망으로 걸러 여과해수가 채워진 비이커에 재 수용 후 3,5 및 8시간 후 소화도를 현광현미경으로 측정하였다. 12종 미세조류의 소화도는 유생의 발달단계에 따라 다양했다. 전 유생기 동안 Thalassiosira weissflogii는 섭취가 관찰되지 않았고, 나머지 종의 소화도는유생의 발달단계에 따라 0.8-99.7%: Chlorella ellipsoidea (0.8-5.4%), Nannochloris oculata (1.4-5.0%), Isochrysis galbana (99.1-99.5%), Pavlova lutheri (99.1-99.5%), I. aff. galbana (99.4-99.5%), Cheatoceros calcitrans (0.0-99.2%), C. gracilis (0.0-99.7%), C. simplex (0.0-95.9%), Phaeodactylum tricornutum (0.0-99.6%),Tetraselmis tetrathele (0.0-99.7%) 그리고 Dunaliella tertiolecta (0.0-99.6%)로 나타났다. 따라서 초기 유생은 I. galbana와 같이 소화성이 높은 것을 공급하고 각정기 이후규조류 또는 담녹조류를 혼합해 주는 것이 소화성을 높일 수있을 것으로 판단된다.

keywords
Digestion index, Epifluorescence microscopy, oyster, Crassostrea gigas, microalgae, larval development

참고문헌

1.

Abdel-Hamid, M.E., Mona, M,H., and Khalil, A,M. (1992) Effects of temperature, food and food concentrations on the growth of the larvae and spat of the edible oyster Crassostrea gigas (Thunberg). Journal of Marine Biology Association, 34: 195-202.

2.

Albentosa, M., Perez-Camacho, A., Labarta, U., Beiras, R. and Fernández-Reiriz, M.J. (1993) Nutritional value of algal diets to clam spat Venerupis pullastra. Marine Ecology Progress Service, 97: 261-269.

3.

Albentosa, M., Fernandez-Reiriz, M.J., Perez-Camacho, A. and Labarta, U. (1999) Growth performance and biochemical composition of Ruditapes decussatus (L.) spat fed on microalgal and wheatgerm flour diets. Journal of Experimental Marine Biology and Ecology, 232: 23-37

4.

Aldana-Aranda, D., Lucas, A., Brulé, T., Andrade, M., García, E., Maginot, N. and Le Pennec, M. (1991) Observations on ingestion and digestion of unicellular algae by Strombus gigas larvae (Mollusca, Gastropoda) using epifluorescence microscopy. Aquaculture, 92: 359-366.

5.

Aldana-Aranda, D., Patiño-Suárez, V. and Brulé, T. (1994) Ingestion and digestion of eight algae by Strombus gigas larvae (Mollusca, Gastropoda) Studied by epifluorescence microscopy. Aquaculture, 126: 151-158.

6.

Aldana-Aranda, D., Patiño-Suárez, V. and Brulé, T. (1997) Nutritional potentialities of Chlamydomonas coccoides and Thalassiosira fluviatilis, as measured by their ingestion and digestion rates by the Queen Conch larvae (Strombus gigas). Aquaculture, 156: 9-20.

7.

Babinchak, J. and Ukeles, R. (1979) Epifluorescence microscopy, a technique for the study of feeding in Crassostrea virgtnica veliger larvae. Marine Biology, 51: 69-76.

8.

Badillo-Salas, C.E., Valenzuela-Espinoza, E., González-Gómez, M.A., Pares-Sierra, G., Ley-Lou, F. and Garcia-Esquivel, Z. (2009) Comparative growth of Pacific oyster (Crassostrea gigas) postlarvae with microfeed and microalgal diets. Aquaculture International, 17: 173-186.

9.

Baldwin, B.S. and Newell, R.I.E. (1995) Feeding rate responses of oyster larvae (Crassostrea virginica) to seston quantity and composition. Journal of Marine Biology Association, 189: 77-91.

10.

Ben-Amotz, A. and Avron, M. (1980) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends in Biotechnology. pp. 121-126. lenum Press. New York.

11.

Bayne, B.L. (1983) Physiological ecology of marine molluscan larvae. In: Verdonk NH, eds, The Mollusca, vol. III. pp. 299-343. Academic Press. New York.

12.

Coutteau, P. and Sorgeloos, P. (1992) The use of algal substitutes and the requirement for live algae in hatchery and nursery rearing of bivalve molluscs: An international survey. Journal of Shellfish Research, 11: 467-476.

13.

Devakie, M.N. and Ali, A.B. (2000) Salinity-temperature and nutritional effects on the setting rate of larvae of the tropical oyster, Crassostrea iredalei (Faustino). Aquaculture, 184: 105-114.

14.

Dunstan, G.A., Volkman, J.K., Jeffrey, S.W. and Barret, S.M. (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acids. Journal of Experimental Marine Biology and Ecology, 161: 115-134.

15.

Elston, R. (1980a) Functional morphology of the coelomocytes of the larval oysters (Crassostrea virginica and Crassostrea gigas). Journal of the Marine Biological Association of the united Kingdom, 60: 947-957.

16.

Elston, R. (1980b) Functional anatomy, histology and ultrastructure of the soft tissues of the larval American oyster, Crassostrea virginica. Proceeding of National Shellfish Association, 70: 65-93.

17.

Espinosa, E.P. and Allam, B. (2006) Comparative growth and survival of juvenile hard clams, Mercenaria mercenaria, fed commercially available diets. Zoo Biology, 25: 503-525.

18.

Enes, P. and Borges, M.T. (2003) Evaluation of microalgae and industrial cheese whey as diets for Tapes decussatus (L.) seed: effect on water quality, growth, survival, condition and filtration rate. Aquaculture Research, 34: 299-309.

19.

Ewart, J.W. and Epifanio, C.E. (1981) A tropical flagellate food for larval and juvenile oysters, Crassostrea virginica Gmelin. Aquaculture 22: 297-300.

20.

Floyd, D.J. (1953) Foods and feeding of oysters as observed with the use of radioactive plankton. Proceeding of National Shellfish Association Convention Addresses, 71-180.

21.

Gallager, S.M. (1988) Visual observations of particle manipulation during feeding in larvae of a bivalve mollusk. Bulletin of marine Science, 43: 344-365.

22.

Gerdes, D. (1983) The Pacific oyster Crassostrea gigas. Part I. Feeding behavior of larvae and adults. Aquaculture, 31: 195-219.

23.

Helm, M.M. and Millican, P.F. (1977). Experiments in the hatchery of Pacific oyster (Crassostrea gigas Thunberg). Aquaculture, 11: 1-12.

24.

His, E., Robert, R. and Dinet, A. (1989) Combined effects of temperature and salinity on fed and starved larvae of the Mediterranean mussel, Mytilus galloprovincialis and the Japanese oyster Crassostrea gigas. Marine Biology, 100: 455-463.

25.

Lemos, M.B.N., Nascimento, I.A., De Araujo, M.M.S., Pereira, S.A., Bahia, I. and Smith, D.H. (1994) The combined effects of salinity, temperature, antibiotics and aeration on larval growth and survival of the mangrove oyster, Crassostrea rhizophorae. Journal of Shellfish Research, 13: 187-192.

26.

Lucas, A. and Rangel, D.C. (1983) Detection of the first larval feeding in Crassostrea gigas, using epifluorescence microscope. Aquaculture, 30: 369-374.

27.

Myers, J.A. and Boisvert, R.N. (1990) The economics of producing algae and bivalve seed in hatcheries. Aquaculture, 86: 163-179.

28.

Owen, G. (1974). Feeding and digestion in the bivalvia. In: Lowenstein O. ed, Advances in Comparative Physiology and Biochemistry, vol. 5. pp. 1-35. Academic Press. New York, USA.

29.

Ponis, E., Robert, R., Parisi, G. and Tredici, M. (2003a). Assessment of the performance of Pacific oyster (Crassostrea gigas) larvae fed with fresh and preserved Pavlova lutheri concentrates. Aquaculture International, 11:69-79.

30.

Ponis, E., Robert, R. and Parisi, G. (2003b) Nutritional value of Pavlova lutheri, Isochrysis aff. galbana clone T-Iso and Chaetoceros calcitrans forma pumilum, either fresh or preserved, for larval and post-larval development of Pacific oyster (Crassostrea gigas). Aquaculture, 221: 491-505.

31.

Rico-Villa, B., Le Coz, J.R., Mingant, C. and Robert, R. (2006) Influence of phytoplankton diet mixtures on microalgae consumption, larval development and settlement of the Pacific oyster Crassostrea gigas (Thunberg). Aquaculture, 256: 377-388.

32.

Rico-Villa, R., Pouvreau, S. and Rober, R. (2009) Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture, 287: 395-401.

33.

Robert, R. and Trintignac, P. (1997) Substitutes for live microalgae in mariculture: a review. Aquatic Living Resources, 10: 315-327.

34.

Urban, E.R. and Langdon, C.J. (1984) Reduction in costs of diets for the American oyster, Crassostrea virginica (Gmelin), by the use of non-algal supplements. Aquaculture, 38: 277-291.

35.

Webb, K.L. and Chu, F.E.. (1982) Phytoplankton as a food source for bibalve larvae. in Pruder GD, Langdon CJ and Conklin DE. eds, Second International Conference on Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition, 272-291. Louisiana State University. Baton Rouge.

36.

Walne, P.R. (1974) Culture of bivalve molluscs, 173. The whitefriars Press Ltd. London and Tondridge.

37.

Walne, P.R. (1976) Factors affecting the relation between feeding and growth in bivalves. Devik O. eds, Harvesting Polluted Waters, 169-183. Plenum Press. New York.

38.

Wisely, B. and Reid, B. (1978) Experimental feeding of sydney rock oysters (Carssostrea commercialis = Saccostrea cucullata): Ⅰ. optimum particle sizes and concentrations. Aquaculture, 15: 319-331.

logo