바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

31개월령 북방전복, Haliotis discus hannai의 성장형질에 대한 선발반응 추정

The Estimation of Selection Response for Growth Traits in 31-month Old of Pacific abalone, Haliotis discus hannai

초록

본 연구에서는 31개월령 북방전복의 성장형질에 대한 선발반응을 추정하기 위해 2008년에 생산된 2세대 육종전복의 모집단 6,858마리와 다음 세대 생산을 위해 최종 교배지침에 포함된 614마리의 자료를 이용하였다. 각 형질별 전체평균은 각 장, 각폭 및 중량이 각각 76.31 mm, 49.48 mm 및 56.90 g로 조사되었고, 중량의 변이계수가 28.70%로 나타나 다른 형질에 비해 자료의 변이가 가장 크게 나타났다. 각장, 각폭, 중량 및 비만도에 있어서 성과 성숙도의 효과에 대한 분산분석을 실시한 결과 비만도를 제외한 모든 형질에서 고도의 유의성이 인정되었으며 (p < 0.01), 성의 효과는 비만도를 제외한 모든 형질에 있어서 수컷보다 암컷이 유의적으로 높게 나타났다. 각 형질별 육종가와 표현형가의 상관관계는 각장, 각폭 및 중량에 있어서 순위상관계수와 단순상관계수의 범위가 0.63에서 0.71로 대체적으로 낮게 나타나 육종가와 표현형가의 상관관계를 더 높인다면 보다 효율적인 개량을 도모할 수 있을 것으로 사료되며, 선발반응 예측치 즉, 기대되는 유전적 개량량은 각장, 각폭 및 중량이 각각 9.6%, 9.5% 및 26.1%로 나타났다. 따라서 다음 세대에 있어서 보다 높은 선발반응을 기대하기 위해서는 선발의 정확도는 물론 최종교배를 위해 선발되는 개체의 비율과 선발강도를 적절히 고려하여야 할 것으로 사료된다.

keywords
Pacific abalone, Selection Response, Growth, Estimation, Haliotis discus hannai

Abstract

본 연구에서는 31개월령 북방전복의 성장형질에 대한 선발반응을 추정하기 위해 2008년에 생산된 2세대 육종전복의 모집단 6,858마리와 다음 세대 생산을 위해 최종 교배지침에 포함된 614마리의 자료를 이용하였다. 각 형질별 전체평균은 각장, 각폭 및 중량이 각각 76.31 mm, 49.48 mm 및 56.90 g 로 조사되었고, 중량의 변이계수가 28.70%로 나타나 다른 형질에 비해 자료의 변이가 가장 크게 나타났다. 각장, 각폭, 중량 및 비만도에 있어서 성과 성숙도의 효과에 대한 분산분석을실시한 결과 비만도를 제외한 모든 형질에서 고도의 유의성이인정되었으며 (p < 0.01), 성의 효과는 비만도를 제외한 모든형질에 있어서 수컷보다 암컷이 유의적으로 높게 나타났다. 각형질별 육종가와 표현형가의 상관관계는 각장, 각폭 및 중량에있어서 순위상관계수와 단순상관계수의 범위가 0.63에서 0.71로 대체적으로 낮게 나타나 육종가와 표현형가의 상관관계를더 높인다면 보다 효율적인 개량을 도모할 수 있을 것으로 사료되며, 선발반응 예측치 즉, 기대되는 유전적 개량량은 각장,각폭 및 중량이 각각 9.6%, 9.5% 및 26.1%로 나타났다. 따라서 다음 세대에 있어서 보다 높은 선발반응을 기대하기 위해서는 선발의 정확도는 물론 최종교배를 위해 선발되는개체의 비율과 선발강도를 적절히 고려하여야 할 것으로 사료된다.

keywords
Pacific abalone, Selection Response, Growth, Estimation, Haliotis discus hannai

참고문헌

1.

Argue, B.J., Arce, S.M., Lotz, J.M. and Moss, S.M. (2002) Selective breeding of pacific white shrimp (Litopenaeus vannamei) for growth and resistance to taura syndrome virus. Aquaculture, 204: 447-460.

2.

Bentsen, H.B., Eknath, A.E., Palada-de Verra, M.S., Danting, J.C., Bolivar, H.L., Reyes, R.A., Diorusio, E.E., Longalong, F.M., Circa, A.V., Tatamen, M.M. and Gjerde, B. (1998) Genetic improvement of farmed tilapias: growth performance in a complete dialled cross experiment with eight strains of Oreochromis niloticus. Aquaculture, 160: 145-173.

3.

Byeun, C,K. (1970) Studies on the propagation of abalone. The Korean Journal of Aquaculture, 3(3): 177-186.

4.

Choe, M.K., Han, S.J., Yang, S.G., Won, S.W., Park, C.J. and Yeo, I.K. (2007) Estimation of genetic parameters for growth-related traits of two Korean abalone subspecies, Haliotis discus hannai and H. discus discus, by using multiple traits of animal model in early growth period. The Korean Journal Malacology, 23(2): 217-225.

5.

Choe, M.K., Han, S.J., Yang, S.G., Won, S.W., Park, C.J. and Yeo, I.K. (2008) Estimation of genetic parameters for growth-related traits in 1-year old of two Korean abalone of subspecies, Haliotis discus hanni and H. discus discus, by using multiple traits of animal model. The Korean Journal Malacology. 24(2): 121-130.

6.

Choe, M.K., Yang, S.G., Won, S.H., Park, C.J., Han, S.J. and Yeo, I.K. (2009) Estimation of genetic parameters for growth-related traits in 9-month old of two Korean abalone subspecies, Haliotis discus hanni and H. discus discus, by using multiple traits of animal model. The Korean Journal of Fisheries and Aquatic Sciences, 42(6): 591-599.

7.

Flaconer, D.S. and Mackey, T.F.C. (1996) Introduction to quantitative genetics. Prentice hall, New York, pp. 480.

8.

Gjedrem, T. (1997) Selective breeding to improve Aquaculture production. World Aquaculture, 28: 33-45.

9.

Gjedrem, T. (2002) Selective breeding essential for further productivity, sustainability in Aquaculture. Global Aquaculture Advocate, 5: 46-47.

10.

Gjerde, B., Terjesen, B.F., Barr, Y., Lein, I. and Thorland, I. (2004) Genetic variation for juvenile growth and survival in atlantic cod (Gadus morhua). Aquaculture, 236: 167-177.

11.

Hara, M. and Kikuchi, S. (1992) Increasing growth rate of abalone, Haliotis discus hannai, using selection techniques. NOAA Technical report, 106: 21-26.

12.

Hara, M. and Sekino, M. (2007) Parentage testing for hachery-produced abalone Haiotis discus hannaiibased on microsatellite markers: preliminary evaluation of early growth of selected strains in mixed family farming. Fisheries Science, 73: 831-836.

13.

Henderson, C.R. (1974) General flexibility of linear model techniques for sire evaluation. Journal of Dairy Science, 57: 963.

14.

Jonasson, J., Stefansson, S.E., guadnason, A. and Steinarsson, A. (1999) Genetic variation for survivaland shell length of cultured red abalone Haliotis refescens in Iceland. Journal of Shellfish Research, 18: 621-625.

15.

Kawahara, M., Noro, M., Omori, O., Hasekura, O. and Kijima, A. (1997) Genetic progress for growth in different selected population of abalone, Haliotis discus hannai, at different hatcheries. Japanese Journal of Fish Genetics and Breeding Science, 25: 73-80.

16.

Lucas, T., Macbeth, M., Degnan, S.M., Knibb, W. and Degnan, B.M. (2006) Heritability estimates for growth in the tropical abalone Haliotis asinina using microsatellites to assign parentage. Aquaculture, 259: 146-152.

17.

Lymbery, A.J. (2000) Genetic improvement in the Australian Aquaculture industry. Aquaculture Research, 31: 145-149.

18.

Mari, G.C. (2002) Domestication and brookstock management-implications for long-term quality of cultured stocks. Global Aquaculture Avocate, 5: 39-42.

19.

Mgaya, Y.D. (2000) A quantitative genetic analysis of juvenile growth for the abalone Haliotis tuberculata Linnaeus. In: recent advances in marine biotechnology. Fingerman, M., Nagabhushanam, R. (Eds.), Science Publishers, pp. 59-73.

20.

Ministry of Maritime Affairs and Fisheries. (1998) Statistical year book of maritime affairs and fisheries. Publisher of Daejong, pp. 979-1132.

21.

Misztal, I. (1990) Restricted maximum likelihood estimation of variance components in animal model using sparse matrix inversion and a supercomputer. Journal of Dairy Science, 73: 163.

22.

Olesen. I., Gjedrem, T., Bentsen, H.B., Gjerde, B. and Rye, M. (2003) Breeding Programs for Sustainable Aquaculture. Journal of Applied Aquaculture, 13: 179-204.

23.

Yang, S.G. (2007) Genetic diversity and evaluation for selective breeding in pacific abalone, Haliotis discus hannai. Ph. D. thesis, University of Dong-eui.

24.

Ryu, S.K. (1979) coastal culture. publisher of Sero, pp. 309-368.

25.

Refstie, T. (1990) Application of breeding schemes. Aquaculture, 85: 163-169.

26.

Schaeffer, L.R. and Wilton, J.W. (1981) Comparison of single and multiple trait beef sire evaluations. Canadian Journal of Animal Science, 61: 565.

27.

Zheng, H., Zhang, G., Liu, X. and Guo, X. (2006) Sustained response to selection in an introduced population of the hermaphroditic bay scallop Argopecten irradians irradians Lamarck (1819). Aquaculture. 255: 579-585.

logo