바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

β-glucan이 바지락의 면역력에 미치는 영향

Effect of β-glucan on immune parameters in the Manila clam Ruditapes philippinarum

초록

<TEX>${\beta}$</TEX>-glucan은 면역증강제의 하나로 어류를 비롯한 척추동물의 사료첨가제에 널리 이용되고 있는 다당체이다. 본 연구는 척추동물과는 다른 면역체계를 갖고 있는 바지락의 면역반응에 <TEX>${\beta}$</TEX>-glucan이 미치는 영향을 조사하기 위하여 실시되었다. 이를 위하여 식물플랑크톤이 공급된 해수에 0, 0.1, 1%의 <TEX>${\beta}$</TEX>-glucan을 첨가하고 이 해수에 바지락을 매일 1시간 씩 2주간 노출시켜 먹이 섭식 시 <TEX>${\beta}$</TEX>-glucan이 흡수되도록 하였다. 바지락의 면역력은 혈구의 식세포작용과 혈림프액의 병원성 세균에 대한 정균력을 실험전과 <TEX>${\beta}$</TEX>-glucan을 급이한 2주 후 각 그룹별로 비교하였다. 실험결과 0.1%의 <TEX>${\beta}$</TEX>-glucan에 노출된 바지락의 식세포율은 대조구와 비교하여 뚜렷한 증가가 관찰되지 않았으나 1%의 <TEX>${\beta}$</TEX>-glucan에 노출된 경우 약 30%의 식세포율이 증가하였다. 또한 정균력에 관한 실험에서 <TEX>${\beta}$</TEX>-glucan은 바지락 혈림프액이 Vibrio tapetis, V. parahaemolyticus, V. ordalii 등의 병원성 세균의 증식을 억제케 함이 확인되었다. 바지락의 사망률 역시 <TEX>${\beta}$</TEX>-glucan에 노출된 바지락에서 낮았으며 이러한 경향은 <TEX>${\beta}$</TEX>-glucan의 농도가 높을수록 낮았다. 본 연구를 통하여 바지락은 <TEX>${\beta}$</TEX>-glucan에 의해 면역력이 상승하였으며, 주사방식이 아닌 해수 침지시에도 발생함을 확인하였다.

keywords
β-lucan, Ruditapes philippinarum, immune stimulation, antibacterial activity

Abstract

β-Glucan is a polysaccharide that is widely used as an adductive in fish feed to facilitate immune stimulation. This study aimed to investigate the effect of β-glucan on immune responses in the Manila clam Ruditapes philippinarum. For this purpose, three groups of R. philippinarum were exposed to 0%, 0.1%, or 1% β-glucan in sea water for 1 hr/day for 2 weeks using an immersion method. Thereafter, two immune parameters—phagocytic rate and antibacterial activity—were measured. R. philippinarum exposed to 1% β-glucan showed an approximate 30% significant increase in phagocytic rate. In addition, β-glucan significantly limited the growth of the pathogenic bacteria Vibrio tapetis, V. parahaemolyticus, and V. ordalii. Moreover, the mortality rates of β-glucan-treated clams decreased during a 17-day experiment. Our study suggests that treatment with β-glucan significantly increases the immune responses in R. philippinarum, and that immersion is a simple and effective method for immune stimulation in this species.

keywords
<TEX>${\beta}$</TEX>-lucan, Ruditapes philippinarum, immune stimulation, antibacterial activity

참고문헌

1.

Ainsworth, A.J. (1994) A β-glucan inhibitable zymosan receptor on channel catfish neutrophils. Veterinary immunology, immunopathology, 41: 141-152.

2.

Allam, B., Raftos, D. (in press). Immune responses to infectious diseases in bivalves. Journal of Invertebrate Pathology.

3.

Aderem, A., Ulevitch, R.J. (2000) Toll-like receptors in the induction of the innate immune response. Nature, 406: 782-787.

4.

Brogden, G., Krimmling, T., Adame, K.M., Naim, H.Y., Steinhagen, D., von Kockritz-Blickwede, M. (2014) The effect of b-glucan on formation, functionality of neutrophil extracellular traps in carp (Cyprinus carpio L.). Developmental, Comparative Immunology, 44: 280-285.

5.

Costa, M.M., Novoa, B., Figueras, A. (2008)Influence of β-glucans on the immune responses of carpet shell clam (Ruditapes decussatus), Mediterranean mussel (Mytilus galloprovincialis). Fish & Shellfish Immunology, 24(5): 498-505.

6.

Diao, J., Ye, H.B., Yu, X.Q., Xu, Y.F., La,. Li, T.B., Wang Y.Q. (2013) Adjuvant, immunostimulatory effects of LPS, β-glucan on immune response in Japanese flounder, Paralichthys olivaceus. Veterinary Immunology, Immunopathology, 156: 167-175.

7.

Ghaedi, G., Keyvanshokooh, S., Azarm, H.M., Akhlaghi, M. (2015) Effects of dietary β-glucan on maternal immunity, fry quality of rainbow trout (Oncorhynchus mykiss). Aquaculture, 441: 78-83.

8.

Hetland, G., Johnson, E., Eide, D.M., Grinde, B., Samuelsen, A.B.C., Wiker, H. G. (2013)Antimicrobial effects of β-glucans, pectin, of the Agaricus blazei based mushroom extract, AndoSanTM. Examples of mouse models for pneumococcal-, fecal bacterial-,and mycobacterial infections. In: Microbial pathogens, strategies for combating them: science, technology, education Vol 2. (ed. by Méndez-Vilas, A.). pp. 889-898. Formatex, Badajoz Spain.

9.

Lopez-Joven, C., de Blas, I., Ruiz-Zarzuela, I., Furones, M.D., Roque, A. (2011) Experimental uptake, retention of pathogenic, nonpathogenic Vibrio parahaemolyticus in two species of clams: Ruditapes decussatus, Ruditapes philippinarum. Journal of Applied Microbiology, 111(1): 197-208.

10.

Medzhitov, R., Janeway, Jr. C.A. (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell, 91: 295–298.

11.

Mueller, A., Raptis, J., Rice, P.J., Kalbfleisch, J.H., Stout, R.D., Ensley, H.E., Browder, W., Williams, D.L. (2000) The influence of glucan polymer structure, solution conformation on binding to (1-->3)-beta-D-glucan receptors in a human monocyte-like cell line. Glycobiology, 10(4): 339-46.

12.

Park, K.I. (2013) Variation of nitric oxide concentrations in response to shaking stress in the Manila clam Ruditapes philippinarum. Korean Journal of Malacology, 29: 1-6.

13.

Park, K.-I., Paillard, C., Chevalier, P., Choi, K.-S. (2006) Report on the occurrence of brown ring disease (BRD) in Manila clam, Ruditapes philippinarum, on the west coast of Korea. Aquaculture, 255: 610–613.

14.

Park, S.O., Kim, J. (2012) Functional food for immune regulation - beta-glucan. Food Science, Industry, 45: 39-47.

15.

Pipe, R.K. (1992) Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Developmental, Comparative Immunology, 16: 111-122.

16.

Ruiz, P., Poblete, M., Yáñez, A.J., Irgang, R., Toranzo, A.E., Avendaño-Herrera, R. (2015) Cell-surface properties of Vibrio ordalii strains isolated from Atlantic salmon Salmo salar in Chilean farms. Diseases of Aquatic Organisms, 113: 9-23.

17.

Sirimanapong, W., Adams, A., Ooi E.L., Green, M.D., Nguyen, D.K., Browdy, L,C., Collet B., Kim D.T. (2015) The effects of feeding immunostimulant β-glucan on the immune response of Pangasianodon hypophthalmus. Fish & Shellfish Immunology, 45:357-366.

18.

Torreilles, J, Guerin, M.C., Roch, P. (1997)Peroxidase-release associated with phagocytosis in Mytilus galloprovincialis haemocytes. Developmental, Comparative Immunology, 21: 267-275.

19.

Tzianabos, A.O. (2000) Polysaccharide immunomodulators as therapeutic agents:structural aspects, biologic function. Clinical Microbiology Reviews, 13: 523-533

20.

Wongsasak, U., Chaijamrus, S., Kumkhong, S., Boonanuntanasarn, S. (2015) Effects of dietary supplementation with β-glucan, synbiotics on immune gene expression, immune parameters under ammonia stress in Pacific white shrimp. Aquaculture, 436: 179-187.

21.

Zhao, Y., Ma, H., Zhang, W., Ai, Q., Mai, K., Xu, Wang, X.,, Liufu, Z. (2011) Effects of dietary β-glucan on the growth, immune responses, resistance of sea cucumber, Apostichopus japonicus against Vibrio splendidus infection. Aquaculture, 315(3): 269-274.

logo