open access
메뉴ISSN : 1225-3480
본 연구는 해산 이매패 8종에 대해 패각 결정 (結晶)에 대한 분광학적 특성을 XRD 기법을 이용하여 조사하고 종간 근연관계에 대해 기존의 조사와 비교하였다. XRD분석을 수행한 결과, 바지락, 백합, 꼬막, 새조개의 패각은 <TEX>$CaCO_3$</TEX>의 orthorhombic 결정형인 aragonite였으며, 가리비와 굴의 패각은 trigonal-rhombohedral 결정형인 calcite였다. 담치와 키조개의 경우 aragonite와 calcite가 혼합된 결정으로 분석되었다. XRD를 이용하여 측정된 패각의 x-선 회절정보는 패류별 특이성을 나타내었으며, 이러한 특성을 이용한 과 (Family) 간 근연관계를 조사한 결과 현재 알려진 분류체계를 잘 대변하고 있었다. 결론적으로 패각 결정 (結晶)에 대한 분광학적 특성은 조사된 패류의 과 (Family) 수준에서 특이성을 잘 나타내며, 향후 종수준의 연구를 통한 종 동정을 위한 추가 연구가 필요함을 시사하였다. 또한 이러한 기술은 소량의 패각을 이용하므로 미확인 소량 절편의 패류 종 파악에 유용하게 이용될 수 있을 것으로 기대된다.
This study investigated spectroscopic characteristics of shell crystals of eight marine bivalve species using X-ray diffraction (XRD) analysis; moreover, the Family level relatedness of shellfish was investigated. In XRD analysis, the shells of Ruditapes philippinarum, Meretrix lusoria, Anadara granosa, and Fulvia mutica were found to have orthorhombic aragonite CaCO3 crystals, while shells of Patinopecten yessoensis and Crassostrea gigas had trigonal-rhombohedral calcite crystals. The shells of Mytilus coruscus and Atrina pectinata were determined to have a mixture of aragonite and calcite crystals. XRD information revealed the Family level-specific characteristics of shellfish; the results agreed with the current taxonomic system. In conclusion, spectroscopic characteristics of shell crystals indicated Family-level characteristics of shellfish and suggested a more intense species-level investigation; this technology may be useful in identifying shellfish species using small quantities of shells.
Antao, S.M., Hassan, I. (2010) Temperature dependence of the structural parameters in the transformation of aragonite to calcite, as determined from in situ synchrotron powder X-ray-diffraction data, The Canadian Mineralogist, 48: 1225-1236.
Carter, J.G., Clark II, G.R. (1985) Classification, phylogenetic significance of molluscan shell microstructure. In: Molluscs, (Ed. by Bottjer, D.J., Hickman, C.S., Ward, P.D., Broadhead, T.W.). pp. 50-71. Notes for a short course, University of Tennessee Department of Geological Sciences Studies in Geology 13.
Chateigner, D., Hedegaard, C., Wenk, H.R. (2000)Mollusc shell microstructures, crystallographic textures. Journal of Structural Geology, 22:1723-1735.
de Paula, S.M., Silveira, M. (2009) Studies on molluscan shells: Contributions from microscopic, analytical methods. Micron, 40: 669-690.
Frýda, J., Klicnarová, K., Frýdová, B., Mergl, M. (2010) Variability in the crystallographic texture of bivalve nacre. Bulletin of Geosciences, 85: 645-662.
Gre´goire, C.H. (1972) Structure of the molluscan shell. In: Chemical Zoology VII. Mollusca. (ed. by Florkin, M., Scheer, B.T.). pp. 45–101, Academic Press, New York, London.
Kim, J.H., Chung, C.W., Lee, J.Y. (2014) Effects of crushed shells on the physical properties of cement mortar. Journal of the Korea Institute of Building Construction, 14: 94-101.
Kontoyannis, C.G., Orkoula, M.G., Koutsoukos, P.G. (1997) Quantitative analysis of sulfated calcium carbonates using Raman spectroscopy, X-ray powder diffraction. Analyst, 122: 33-38.
Min, D.K., Lee, J.S., Koh, D.B., Je, J.G. (2004)Mollusks in Korea. Min Molluscan Research Institute, Seoul.
Islam, K.N., Bakar, B.Z.B.A, Noordin, M.M, Hussein, M.Z.B., Rahman, N.S.B.A, Ali, M.E. (2011)Characterisation of calcium carbonate, its polymorphs from cockle shells (Anadara granosa). Powder Technology, 213: 188–191.
Hong, S. Y. (2006) Marine Invertebrates in Korean Coasts. Academy Publishing Company, Inc., Seoul.
Nishida, K., Ishimura, T., Suzuki, A., Sasaki, T. (2012) Seasonal changes in the shell microstructure of the bloody clam, Scapharca broughtonii (Mollusca:Bivalvia: Arcidae). Palaeogeography, Palaeoclimatology, Palaeoecology, 363–364: 99–108.
Rietveld, H. M. (1969) A profile refinement method for nuclear, magnetic structures. Journal of Applied Crystallography, 2: 65–71.
Sitepu, H., O'Connor, B.H., Li, D. (2005)Comparative evaluation of the March, generalized spherical harmonic preferred orientation models using X-ray diffraction data for molybdite, calcite powders. Journal of Applied Crystallography, 38: 158-167.
Tsai, W.T. (2013) Microstructural Characterization of Calcite-Based Powder Materials Prepared by Planetary Ball Milling. Materials, 6: 3361-3372
Trinkler, N., Bardeau, J.F., Marin, F., Labonne, M., Jolivet, A., Crassous, P., Paillard, C. (2011)Mineral phase in shell repair of Manila clam Venerupis philippinarum affected by brown ring disease. Diseases of Aquatic Organisms, 93: 149-62.
Watabe, N. (1984) Shell. In; Biology of the Integument, 1. Invertebrates (ed. by Bereiter-Hahn, J., Matoltsy, A.G., Richards, S.). pp. 448–485. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
Watabe, N. (1988) Shell structure. In: The Mollusca, 11. Form, Function. (ed. by Trueman, E.R., Clarke, M.R.). pp. 69–104. Academic Press Inc., San Diego.
Weiner, S., Traubt, W. (1980) X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Letters, 111: 311-316.
Wilbur, K.M. (1972) Shell formation in mollusks. In:Chemical Zoology VII. (ed. by Florkin, M., Scheer, B.T.). pp. 103–145. Academic Press, New York, London.
Yang, W., Kashani, N., Li, X.W., Zhang, G.P., Meyers M.A. (2011) Structural characterization, mechanical behavior of a bivalve shell (Saxidomus purpuratus). Materials Science, Engineering: C, 31: 724-729.