Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Comparison of chemical and photochemical generation of hydrides in Se speciation study with HPLC-HG-ICPMS

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2012, v.25 no.6, pp.339-344
https://doi.org/10.5806/AST.2012.25.6.339


  • Downloaded
  • Viewed

Abstract

In this research, hydride generation in HPLC-ICPMS for the selenium speciation was investigated. Chemical and photochemical vapor generation techniques were compared for the effective generation of selenium vapour. HBr/KBrO3 was used for the chemical reduction and a UV lamp was used for the photochemical reduction. It was found out that the photochemical reduction was more effective than the chemical reduction in all of selenium species studied. The optimum conditions for the generation of vapour are 0.4% KI, 2.5%NaBH4, and 1.0 M HCl. The enhancement factor using a photochemical hydride generation was from 6.3 to 16.7 times for inorganic and organic selenium species.

keywords
Se, Se speciation, hydride generation, photochemical reduction, HPLC-HG-ICPMS


Reference

1

1. C. Casiot, J. Szpunar, R. Lobinski and M. Potin-Gautier, J. Anal. At. Spectrom., 14, 645-650 (1999).

2

2. N. Jakubowski, R. Lobinskib and L. Moens, J. Anal. At. Spectrom., 19, 1-4 (2004).

3

3. J. A. Day, S. S. Kannamkumarath, E. Yanes, M. Montes-Bayo´n and J. A. Caruso J. Anal. At. Spectrom., 17, 27-31 (2002).

4

4. A. R. Timerbaev, Talanta, 52, 573-581 (2000).

5

5. J. W. Olesik, in ‘Elemental Speciation: New Approaches for Trace Element Analysis’, p. 151. J. A. Caruso, K. L. Sutton and K. L. Ackley Ed., Elsevier, New York, 2000.

6

6. S. P. Mendez, M. M. Bayon, E. B. Gonzalez and A. Sanz Medel, J. Anal. At. Spectrom., 14, 1333-1339, (1999).

7

7. C. Jorgelin, R. Wuillouda, A. Vonderheidea, J. Caruso, Spectrochimica Acta, 59B, 755-792 (2004).

8

8. H. Ge, X. J. Cai, J. F. Tyson, P. C. Uden, E. R. Denoyer, E. Block, Anal. Commun., 33, 279-287 (1996).

9

9. H. Cho, Y. Pak, J. of Kor. Chem. Soc., 55(3), 472-477 (2011).

10

10. A. Darrouzes and M. Potin-Gautier, Talanta, 75, 362-368 (2008).

11

11. M. E. Moreno, C. Perez-Conde and C. Camara, J. Anal. Atom. Spectrom., 15, 681-693 (2000).

12

12. M. Johansson, G. Bordin and A. R. Rodriguez, Analyst, 125, 273-281 (2000).

13

13. M. Vilano and R. Rubio, J. Anal. Atom. Spectrom., 15, 177-185 (2000).

14

14. X. M. Guo, R. E. Sturgeon, Z. Mester and G. J. Gardner, Anal. Chem., 75, 2092-2100 (2003).

15

15. X. M. Guo, R. E. Sturgeon, Z. Mester and G. J. Gardner, Anal. Chem., 76, 2401-2408 (2004).

16

16. S. Simon, A. Barats, F. Pannier and Martine Potin-Gautier, Analytical and Bioanalytical Chemistry, 383(4), 562-569 (2005).

17

17. Y. Yin, J. Liu, G. Jiang, Trends in Anal. Chem., 30(10), 1672-1684 (2011).

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Analytical Science and Technology