- P-ISSN 1225-0163
- E-ISSN 2288-8985
벤젠 노출의 생물학적 노출인 인체 소변 중 뮤콘산(trans, trans-muconic acid) 분석을 위한 녹색 HPLC (Highr performance liquid chromatography) 분석방법을 개발하고 검증하였다. 이온교환수지 고상추출 카트리지를 사용하여 소변 중 뮤콘산을 추출하고, MF-Ph1 SG80 (<TEX>$150mm{\times}2.0mm$</TEX> I.D., 5 <TEX>${\mu}m$</TEX>) 칼럼과 이동상(10 mM <TEX>$KH_2PO_4$</TEX>+0.1% <TEX>$H_3PO_4$</TEX>)을 뮤콘산의 HPLC 분석에 사용하였으며 검출은 자외가시부검출기 259 nm에서 실시하였다. 0.1-5.0 mg/L 범위에서 상관계수 (<TEX>$r^2$</TEX>) 0.9992 이상의 양호한 직선성을 나타내는 검량선을 얻었다. 일내 및 일간 정밀성(RSD)은 각각 0.9-8.5% 및 3.1-4.5%였으며, 평균 회수율은 97.5-101.7% 범위였다. 본 연구에서는 유기 용매를 전혀 사용하지 않지만 기존 방법과 동일한 분석 성능을 가지고 있는 친환경 분석법을 개발하였다. 확립된 분석법은 벤젠 노출 평가를 위한 근로자의 생물학적 모니터링 방법으로 활용될 수 있을 것이다.
An environmentally friendly, so-called green, high performance liquid chromatography method was developed and validated for the determination of trans, trans-muconic acid (t,t-MA) in human urine as a biomarker of benzene exposure. After urinary t,t-MA was extracted and enriched using solid-phase extraction, a MF-Ph1 SG80(150 mm×2.0 mm I.D., 5 μm) column with a mobile phase of 10 mM KH2PO4 containing 0.1% H3PO4 was used for isocratic separation of t,t-MA with UV detection at 259 nm. The calibration curve was constructed in the range of 0.1-5.0 mg/L with good linearity (r2=0.9992). The intra-day and inter-day precision (as RSD) were 0.9-8.5%and 3.1-4.5%, respectively. The average recovery ranged from 97.5% to 101.7%. The green sample preparation and separation with no organic solvents were successfully achieved. The validated method would be suitable for the routine biological monitoring of benzene exposure in the occupational settings.
1. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological profile for Benzene, http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=40&tid=14, Assessed 27 Jun 2011.
2. M. Carrieri, E. Bonglio, M. L. Scapellato, I. Macc, P. Faranda, E. Paci, G. B. Bartolucci and G. Tranfo, Toxicol. Lett., 192, 22-28 (2010).
3. C. P. Weisel, Chem. Biol. Interact., 184, 58-66 (2010).
4. M. Arayasiri, C. Mahidol, P. Navasumrit, H. Autrup and M. Ruchirawat, Sci. Total Environ., 408, 4855-4862 (2010).
5. International Agency for Research on Cancer (IARC), http://www.iarc.fr, Assessed 27 Jun 2011.
6. P. J. Sabourin, W. E. Bechtold and R. F. Henderson, Anal. Biochem., 170, 316- 327 (1988).
7. G. Witz, Z. Zhang and B. D. Goldstein, Environ. Health Perspect., 104, 1195-1199 (1996).
8. S. M. Rappaport, S. Kim, Q. Lan, G. Li, R. Vermeulen, S. Waidyanatha, L. Zhang, S. Yin, M. T. Smith and N. Rothmane, Chem. Biol. Interact., 184, 189-195 (2010).
9. P. Manini, G. De Palma, R. Andreoli, P. Mozzoni, D. Poli, M. Goldoni, M. Petyx, P. Apostoli and A. Mutti, Toxicol. Lett., 193, 229-235 (2010).
10. L.-C. Lin, Y.-M. Chiung, J.-F. Shih, T.-S. Shih and P.-C. Liao, Anal. Chim. Acta, 555, 34-40 (2006).
11. Deutsche Forschungsgemeinschaft (DFG), ‘Essential Biomonitoring Methods’, Wiley-VCH, Weinheim, 2006.
12. G. Scherer, T. Renner and M. Meger, J. Chromatogr. B, 717, 179-199 (1998).
13. Korea occupational safety and health agency (KOSHA), http://oshri.kosha.or.kr, Assessed 27 Jun 2011.
14. S. Armenta, S. Garrigues and M. de la Guardia, Trends Anal. Chem., 27, 497-511 (2008).
15. M. Farre, S. Perez, C. Goncalves, M. F. Alpendurada and D. Barcelo, Trends Anal. Chem., 29, 1347-1362 (2010).
16. World Health Organization (WHO), Biological Monitoring of Chemical Exposure in the Workplace Guidelines: Volume 2, http://whqlibdoc.who.int/hq/1996/WHO_HPR_OCH_96.2.pdf, Assessed 27 Jun 2011.
17. C. J. Welch, N. Wu, M. Biba, R. Hartman, T. Brkovic, X. Gong, R. Helmy, W. Schafer, J. Cuff, Z. Pirzada and L. Zhou, Trends Anal. Chem., 29, 667-680 (2010).
18. U.S. Food and Drug Administration, Guidance for Industry: Bioanalytical Method Validation, http://www.fda.gov/downloads/Drugs/Guidance Compliance Regulatory Information/Guidances/ucm070107.pdf, Assessed 27 Jun 2011