- P-ISSN 1225-0163
- E-ISSN 2288-8985
지표수 중에 GC-MS에 의한 페놀, 다환방향족탄화수소 및 농약류를 포함한 17 개 유해화합물을 동시에 분석하는 방법을 개발하였다. 1.0 L의 물 시료를 분액깔대기 안에 넣고 NaCl로 포화시킨 다음 40mL methylene chloride로 추출하였다. 이 방법은 1.0-10 ng/L 범위의 정량한계를 보였고 22% 이내의 정밀도를 보였다. 확립한 방법을 사용하여 35 지역의 금강 물 70 개 시료를 분석한 결과 유해화합물이 1.1-26,604 ng/L의 농도범위로 검출되었으며 측정값은 외국에서 확립한 준거치를 초과하는 값은 없었다. 이 측정방법은 지표수에서 유해화합물에 대한 국가모니터링사업에 사용할 때 효율적인 것으로 판단된다.
A gas chromatography-mass spectrometric (GC-MS) method was developed for determining 17 hazard compounds containing phenols, polycyclic aromatic hydrocarbons and pesticides in surface water. A 1.0 L surface water sample was placed in a separatory funnel and saturated with NaCl, and the solution was extracted with 40 mL of methylene chloride. Under the established condition, the lowest quantification limit was 1.0-10 ng/L and the relative standard deviations were less than 22%. The method was used to analyze 70 surface water samples collected from 35 regions in Gum-River. The samples revealed the compounds concentrations in the range of 1.1-26,604 ng/L. Maximum concentrations of compounds detected were not exceeded guidelines established in other countries. The developed method may be valuable for monitoring hazards in water.
1. T. Heberer, Toxicol. Lett., 131, 5-17 (2002).
2. US Environmental Protection Agency, Method for Organic Chemical Analysis of Municipal and Industrial Waste, Method 625: Base/Neutral and Acids, Washington, DC, USA, 1998.
3. US Environmental Protection Agency, Method 610, Washington, DC, USA, 1991.
4. P. P. Zhang, Z. G. Shi and Y. Q. Feng, Talanta, 85(5), 2581-2586 (2011).
5. S. Mohammad and M. Mehdi, Anal. Bioanal. Chem., 396(7), 2685-2693 (2010).
6. A. Sarafraz-Yazdi and D. Beiknejad, Chromatographia, 62, 49-54 (2005).
7. M. Schellin and P. Popp, J. Chromatogr. A, 1072(1), 37-43 (2005).
8. A. S. Sokhranyaeva, M. A. Statkus and G. I. Tsizin, J. Anal. Chem., 65(11), 1155-1163 (2010).
9. R. S. Zhao, X. Wang and J. P. Yuan, J. Sep. Sci., 32(4), 630-636 (2009).
10. X. Huang, N. Qiu and D. Yuan, J. Chromatogr. A, 1194(1), 134-138 (2008).
11. X. Liu, Y. Ji and Y. Zhang, J. Chromatogr. A, 1165, 10-17 (2007).
12. S. Gemma and M. Juan, J. Sep. Sci., 27, 1524-1530 (2004).
13. J. Olejniczak and J. Staniewski, Anal. Chim. Acta, 588(1), 64-72 (2007).
14. A. Kovacs, M. Mortl and A. Kende, Microchim. Acta, 99(1), 125-131 (2011).
15. A. Kovacs, A. Kende and M. Mortl, J. Chromatogr. A, 1194(1), 139-142 (2008).
16. M. Kojima, S. Tsunoi and M. Tanaka, J. Chromatogr. A, 1042, 1-7 (2004).
17. L. Montero, S. Conradi and H. Weiss, J. Chromatogr. A, 1071, 163-169 (2005).
18. Y. C. Fiamegos, C. G. Nanos and G. A. Pilidis, J. Chromatogr. A, 983, 215-223 (2003).
19. Z. Xinna, F. Lingyan and H. Jia, Chromatographia, 69, 1385-1389 (2009).
20. D. M. Brum, R. J. Cassella and A. D. Pereira Netto, Talanta, 74(5), 1392-1399 (2008).
21. T. Guilherme and L. Fernando, J. Liq. Chromatogr. & Technol., 28(19), 3045-3056 (2005).
22. S. B. Hawthorne, R. W. St. Germain and N. A. Azzolina, Environ. Sci. & Technol., 42(21), 8021-8026 (2008).
23. S. Luc, D. Catherine and W. Emmanuel, J. Liq. Chromatogr. & Technol., 29(1), 69-85 (2006).
24. Y. N. Hsieh, P. C. Huang and I. W. Sun, Anal. Chim. Acta, 557, 321-328 (2006).
25. H. W. Jacobus and R. E. Richard, PAHs, 22, 327-338 (2002).
26. M. S. Garcia-Falcon, B. Cancho-Grande and J. Simal-Gandara, Wat. Res., 38(7), 1679-1684 (2004).
27. K. S. Williamson, J. D. Petty and J. N. Huckins, Chemosphere, 49(7), 703-715 (2002).
28. Y. R. Tahboub, M. F. Zaater and Z. A. Al-Talla, J. Chromatogr. A, 1098, 150-155 (2005).
29. A. Giordano and F. Franzó, Anal. Bioanal. Chem, 393, 1733-1743 (2009)
30. J. Beltran, F. J. Lopez and M. Forcada, Anal. Chim. Acta, 356, 125-133 (1997).
31. J. Slobodnik, A. C. Hogenboom and J. J. Vreuls, J. Chromatogr. A, 741(1), 59-74 (1996).
32. K Sebastian, B. Peter and W. Friedrich, Anal. Bioanal. Chem., 395(6), 1787-1794 (2009).