ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

논문 상세

    TLC상 분리 전 직접적 유도체화 반응과 이미지 분석을 통한 아민 화합물의 반정량분석을 위한 선행평가

    The preliminary evaluation of semi-quantitative analysis by in situ pre-chromatographic derivatization of amines and image analysis in TLC

    분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2015, v.28 no.2, pp.79-85
    https://doi.org/10.5806/AST.2015.28.2.79
    김연수 (충남대학교)
    최성운 (충남대학교)
    • 다운로드 수
    • 조회수

    초록

    TLC (SiO2) 상에서 3가지 유사 암페타민 류 아민 화합물과 3가지 유도체화 시약 사이의 반응으로부터 얻어진 아민유도체의 이미지 분석으로부터 암페타민 류 화합물에 대한 신속하고 경제적인 반정량적인 분석방법을 제시하기 위하여 선행 실험을 하였다. TLC상 직접적인(in situ, co-spot) 유도체화 반응의 적정화를 시도하였고 그 TLC 결과물들을 디지털카메라로 촬영하여 이미지를 얻은 후 2가지의 이미지 분석 프로그램(CP Atlas 2.0 및 ImageJ)에 적용하여 재현성(RSD; %)과 상관성(R2)을 각각 확인 및비교하였다. 그 결과, 반응 조건에 대한 조정이 필요하였고(반응 온도 등) 각 시료별 2가지의 농도(0.5 mg/mL 및 0.01 mg/mL)에서 반응의 재현성은 0.69~5.50% 범위이었으며 반응(2 μL per spot)의 생성물과 아민의 농도에 대한 상관성은 0.1~0.005 mg/mL의 농도 구간에서 가장 높게 나타났다(R2> 0.9906). 또한, 두가지 프로그램 모두 재현성과 직선성에 대한 유사한 결과를 나타내어 직접적인 유도체화 반응과 TLC 이미지에 대한 이들 프로그램을 사용한 분석이 아민 화합물에 대한 반정량적인 분석으로 사용될 수 있는가능성을 보였다.

    keywords
    TLC, in situ derivatization, repeatability, linearity, image analysis

    Abstract

    A preliminary experiment was performed to develop a fast, convenient, and economical semi-quantitative method of analyzing amphetamine-like amines from images of derivatives. These were generated from the reaction (in situ, co-spot) of three amphetamine-like compounds with three derivatization reagents on a TLC plate. The attempt was made to optimize the reaction conditions for an efficient derivatization reaction, and TLC images taken by a digital camera were analyzed using two types of image analysis program (CP Atlas 2.0 and ImageJ) for repeatability (RSD, %) and linearity (R2). Then, their results were compared. For efficient derivatization, the reaction conditions needed to be modified. The results of image analysis of each of the samples at two different concentrations (0.5 mg/mL and 0.01 mg/mL) showed that the RSD values for reaction repeatability were in the range of 0.69-5.50%. From the calibration curves between the area of the derivative and the concentration of amines, the R2 values (R2 > 0.9906) for good linear correlation were found to be high, in a concentration range of 0.1-0.005 mg/mL of amines. In addition, the two programs demonstrated little difference in the analysis of repeatability and linearity of the derivatization, so that the current method has the potential to be used for the semi-quantitative analysis of amines.

    keywords
    TLC, in situ derivatization, repeatability, linearity, image analysis


    참고문헌

    1

    1. J. M. P otka, M. Biziuk and C. Morrison, TrAC Trends in Anal. Chem., 30(7), 1139-1158 (2011).

    2

    2. N. Kato, Science & Justice, 41(4), 239-244 (2001).

    3

    3. E. Deconinck, P. Y. Sacr, P. Courselle and J. O. De Beer, J. Chromatogr. Sci., 51, 791-806 (2013).

    4

    4. G. Gbitz and R. Wintersteiger, J. Anal. Toxicol., 4(3), 141-144 (1980).

    5

    5. R. A. de Zeeuw, J. Hartstra and J. P. Franke, J. Chromatogr. A, 674(1), 3-13 (1994).

    6

    6. R. Kasar, A. Gogia, K. Shah, V. Anand and C. Anand, RRJPA, 2(4), 1-8 (2013).

    7

    7. C. Tistaert, B. Dejaegher and Y. Vander Heyden, Anal. Chim. Acta., 690, 148-161 (2011).

    8

    8. S. A. Kustrin and C. G. Hettiarachchi, Modern Chem. & Application, 2(1), e118 (2014).

    9

    9. D. Casoni and C. Srbu, Talanta, 114, 117-123 (2013).

    10

    10. E. Reich and A Schibli, In ‘High-performance thinlayer chromatography for the analysis of medicinal plants’, Thieme Medical Publishers, New York, USA (2006).

    11

    11. B. L. Ling, W. R. G. Baeyens, B. Del Castillo, K. Stragier, H. Marysael and P. De Moerloose, J. Pharm. Biomed. Anal., 7, 1671-1678 (1989).

    12

    12. R. M. Linares, J. H. Ayala, A. M. Afonso and V. Gonzalez, Analyst., 123, 725-729 (1998).

    13

    13. L. A. Barret, A. Polidori, F. Bonnete, P. Bernard-Savary and C. Jungas, J. Chromatogr. A, 1281, 135-141 (2013).

    14

    14. P. C. Lindholm, J. S. Knuutinen, H. S. Ahkola and S. H. Herve, BioResources, 9(2), 3688-3732 (2014).

    15

    15. P. Leroy, A. Nicolas and A. Moreau, J. Chromatogr., 282, 561-569 (1983).

    16

    16. C. R. Clark and M. M. Wells, J. Chromatogr. Sci., 16, 332-339 (1978).

    17

    17. S. Wawrzycki, E. Pyra and B. Wawrzycki, J. Planar Chromatogr., 14, 21-23 (2001).

    18

    18. S. Hernndez-Cassou and J. Saurina, J. Chromatogr. B, 879(17), 1270-1281 (2011).

    19

    19. B. L. Ling, W. R. G. Baeyens, B. Del Castillo, K. Stragier, H. Marysael and P. De Moerloose, J. Pharm. Biomed. Anal., 7, 1671-1678 (1989).

    20

    20. G. Maeder, M. Pelletier and W. Haerdi, J. Chromatogr., 593, 9-14 (1992).

    21

    21. S. W. Choi, H. I. Lee and N. D. Sung, Anal. Sci. & Tech., 26(4), 228-234 (2013).

    22

    22. M. B. Gawande and P. S. Branco, Green Chem., 13(12), 3355-3359 (2011).

    23

    23. H. Yamada, A. Yamahara, S. Yasuda, M. Abe, K. Oguri, S. Fukushima and S. Ikeda-Wada, J. Anal. Toxicol., 26(1), 17-22 (2002).

    24

    24. Y. S. Kim and S. W. Choi, Kor. J. Sci. Crim. Investig., 8(1), 31-36 (2014).

    25

    25. R. Kubec and E. Dadkov, J. Chromatogr. A, 1216(41), 6957-6963, (2009).

    26

    26. E. De Mey, G. Drabik-Markiewicz, H. De Maere, M. C. Peeters, G. Derdelinck, H. Paelinck and T. Kowalska, Food Chem., 130, 1017-1023 (2012).

    27

    27. S. W. Choi, S. H. Oh and N. D. Sung, Korean J. Sci. Crimi. Investig., 7(2), 89-96 (2013).

    28

    28. A. V. Irish Hess, J. Chem. Edu., 84(5), 842-847 (2007).

    29

    29. D. S. Maruti and S. K. Banerjee, J. Res. Pharm. Sci., 4(2), 310-315 (2013).

    30

    30. J. Saminathan and T. Vetrichelvan, KMITL Sci. Tech. J., 11(2), 54-63 (2011).

    상단으로 이동

    분석과학