• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    The preliminary evaluation of semi-quantitative analysis by in situ pre-chromatographic derivatization of amines and image analysis in TLC

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2015, v.28 no.2, pp.79-85
    https://doi.org/10.5806/AST.2015.28.2.79


    • Downloaded
    • Viewed

    Abstract

    A preliminary experiment was performed to develop a fast, convenient, and economical semi-quantitative method of analyzing amphetamine-like amines from images of derivatives. These were generated from the reaction (in situ, co-spot) of three amphetamine-like compounds with three derivatization reagents on a TLC plate. The attempt was made to optimize the reaction conditions for an efficient derivatization reaction, and TLC images taken by a digital camera were analyzed using two types of image analysis program (CP Atlas 2.0 and ImageJ) for repeatability (RSD, %) and linearity (R2). Then, their results were compared. For efficient derivatization, the reaction conditions needed to be modified. The results of image analysis of each of the samples at two different concentrations (0.5 mg/mL and 0.01 mg/mL) showed that the RSD values for reaction repeatability were in the range of 0.69-5.50%. From the calibration curves between the area of the derivative and the concentration of amines, the R2 values (R2 > 0.9906) for good linear correlation were found to be high, in a concentration range of 0.1-0.005 mg/mL of amines. In addition, the two programs demonstrated little difference in the analysis of repeatability and linearity of the derivatization, so that the current method has the potential to be used for the semi-quantitative analysis of amines.

    keywords
    TLC, in situ derivatization, repeatability, linearity, image analysis


    Reference

    1

    1. J. M. P otka, M. Biziuk and C. Morrison, TrAC Trends in Anal. Chem., 30(7), 1139-1158 (2011).

    2

    2. N. Kato, Science & Justice, 41(4), 239-244 (2001).

    3

    3. E. Deconinck, P. Y. Sacr, P. Courselle and J. O. De Beer, J. Chromatogr. Sci., 51, 791-806 (2013).

    4

    4. G. Gbitz and R. Wintersteiger, J. Anal. Toxicol., 4(3), 141-144 (1980).

    5

    5. R. A. de Zeeuw, J. Hartstra and J. P. Franke, J. Chromatogr. A, 674(1), 3-13 (1994).

    6

    6. R. Kasar, A. Gogia, K. Shah, V. Anand and C. Anand, RRJPA, 2(4), 1-8 (2013).

    7

    7. C. Tistaert, B. Dejaegher and Y. Vander Heyden, Anal. Chim. Acta., 690, 148-161 (2011).

    8

    8. S. A. Kustrin and C. G. Hettiarachchi, Modern Chem. & Application, 2(1), e118 (2014).

    9

    9. D. Casoni and C. Srbu, Talanta, 114, 117-123 (2013).

    10

    10. E. Reich and A Schibli, In ‘High-performance thinlayer chromatography for the analysis of medicinal plants’, Thieme Medical Publishers, New York, USA (2006).

    11

    11. B. L. Ling, W. R. G. Baeyens, B. Del Castillo, K. Stragier, H. Marysael and P. De Moerloose, J. Pharm. Biomed. Anal., 7, 1671-1678 (1989).

    12

    12. R. M. Linares, J. H. Ayala, A. M. Afonso and V. Gonzalez, Analyst., 123, 725-729 (1998).

    13

    13. L. A. Barret, A. Polidori, F. Bonnete, P. Bernard-Savary and C. Jungas, J. Chromatogr. A, 1281, 135-141 (2013).

    14

    14. P. C. Lindholm, J. S. Knuutinen, H. S. Ahkola and S. H. Herve, BioResources, 9(2), 3688-3732 (2014).

    15

    15. P. Leroy, A. Nicolas and A. Moreau, J. Chromatogr., 282, 561-569 (1983).

    16

    16. C. R. Clark and M. M. Wells, J. Chromatogr. Sci., 16, 332-339 (1978).

    17

    17. S. Wawrzycki, E. Pyra and B. Wawrzycki, J. Planar Chromatogr., 14, 21-23 (2001).

    18

    18. S. Hernndez-Cassou and J. Saurina, J. Chromatogr. B, 879(17), 1270-1281 (2011).

    19

    19. B. L. Ling, W. R. G. Baeyens, B. Del Castillo, K. Stragier, H. Marysael and P. De Moerloose, J. Pharm. Biomed. Anal., 7, 1671-1678 (1989).

    20

    20. G. Maeder, M. Pelletier and W. Haerdi, J. Chromatogr., 593, 9-14 (1992).

    21

    21. S. W. Choi, H. I. Lee and N. D. Sung, Anal. Sci. & Tech., 26(4), 228-234 (2013).

    22

    22. M. B. Gawande and P. S. Branco, Green Chem., 13(12), 3355-3359 (2011).

    23

    23. H. Yamada, A. Yamahara, S. Yasuda, M. Abe, K. Oguri, S. Fukushima and S. Ikeda-Wada, J. Anal. Toxicol., 26(1), 17-22 (2002).

    24

    24. Y. S. Kim and S. W. Choi, Kor. J. Sci. Crim. Investig., 8(1), 31-36 (2014).

    25

    25. R. Kubec and E. Dadkov, J. Chromatogr. A, 1216(41), 6957-6963, (2009).

    26

    26. E. De Mey, G. Drabik-Markiewicz, H. De Maere, M. C. Peeters, G. Derdelinck, H. Paelinck and T. Kowalska, Food Chem., 130, 1017-1023 (2012).

    27

    27. S. W. Choi, S. H. Oh and N. D. Sung, Korean J. Sci. Crimi. Investig., 7(2), 89-96 (2013).

    28

    28. A. V. Irish Hess, J. Chem. Edu., 84(5), 842-847 (2007).

    29

    29. D. S. Maruti and S. K. Banerjee, J. Res. Pharm. Sci., 4(2), 310-315 (2013).

    30

    30. J. Saminathan and T. Vetrichelvan, KMITL Sci. Tech. J., 11(2), 54-63 (2011).

    상단으로 이동

    Analytical Science and Technology