• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Dopamine determination using a biosensor based on multiwall carbon nanotubes paste and burley tobacco-peroxidase

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2015, v.28 no.2, pp.98-105
    https://doi.org/10.5806/AST.2015.28.2.98



    • Downloaded
    • Viewed

    Abstract

    The development of an enzymatic biosensor for dopamine determination based on multiwall carbon nanotubes (MWCNTs) and peroxidase obtained from the crude extract of burley tobacco (Nicotiana tabacum L.) was proposed. Peroxidase catalyzes the oxidation of dopamine to dopamine quinone. The influence on the response of analytical parameters of biosensors such as enzyme concentration, dopamine concentration, pH, and phosphate buffer solution concentration were investigated. The analytical parameters obtained, including sensitivity, linearity, and stability, were investigated. The proposed method for dopamine determination presented good selectivity even in the presence of uric acid and ascorbic acid. The sensor presented a higher response for dopamine in 0.010 M phosphate buffer at pH 6.50, with an applied potential of -0.15 V. The detection limit of the electrode was 2.7×10−6 M (S/N = 3) and the relative standard deviation of the measurements, which were repeated 10 times using 5.0×10−2 M dopamine, was 1.3%.

    keywords
    burley tobacco biosensor, dopamine, multiwall carbon nanotube


    Reference

    1

    1. W. Birkmayer and P. Riederer, Understanding the Neurotransmitters, Springer, New York, 1-79 (1989).

    2

    2. G. Stenstrm, B. Sjgren and J. Waldenstrm, Acta Med. Scand., 214, 145-152 (1983).

    3

    3. J. R. Cooper, F. E. Bloom and R. H. Roth, The Biochemical Basis of Neuropharmacology, Oxford University Press, New York, pp. 259-311 (1986).

    4

    4. J. S. Sidwell and G. A. Rechnitz, Biotechnol. Lett., 7, 419-425 (1985).

    5

    5. M. P. Connor, J. Sanchez, J. Wang, M. R. Smyth and S. Mannino, Analyst, 114, 1427-1429 (1989).

    6

    6. C. Petit, A. Gonzalez-Cortes and J. M. Kauffmann, Talanta, 42, 1783-1789 (1995).

    7

    7. J. S. Sidwell and G. A. Rechnitz, Biotechnol. Lett., 7, 419-422 (1985).

    8

    8. M. P. Connor, J. Wang, W. Kubiak and M. R. Smyth, Anal. Chim. Acta, 229, 139-143 (1990).

    9

    9. F. Mazzei, F.; F. Botre, M. Lanzi, G. Lorenti and F. Porcelli, Sens. Actuators B., 7, 427-430 (1992).

    10

    10. T. C. Tan and Y. Chen, Sens. Actuators B., 17, 101-107 (1994).

    11

    11. Y. Chen and T. C. Tan, Sens. Actuators B., 28, 39-48 (1995).

    12

    12. N. H. Horowitz, M. Fling and G. Horn, Methods in Enzymology, Academic press, New York, Vol. XVIIA, pp 615-620 (1970).

    13

    13. F. Ortega and E. Domnguez, J. Biotechnol., 31, 289-300 (1993).

    14

    14. Y. F. Tu, Z. Q. Fu and H. Y. Chen, Sens. Actuators B., 80, 101 (2001).

    15

    15. Y. U. Chen, T. C. Tan and T. C. Chemical Engineering Science, 7, 1027 (1996).

    16

    16. C. S. Caruso, I. C. Vieira and O. Fatibello-Filho, Anal. Lett., 32, 39-43 (1999).

    17

    17. M. Pravda, C. Petit, Y. Michotte, J. M. Kauffmann and K. Vytras, J. Chromatogr. A., 727, 47-52 (1996).

    18

    18. K. O. Lupetti, L. A. Ramos, I. C. Vieira and O. F. Filho, Il Farmaco, 60, 179-183 (2005).

    19

    19. Y. Zou, C. Xiang, S. Li-Xian and F. Xu, Biosensors and Bioelectronics, 23(7), 1010-1016 (2008).

    20

    20. S. Iijima, Nature, 354, 56-58 (1991).

    21

    21. Z. Herrasti, F. Martnez and E. Baldrich, Sens. Actuators B: Chemical, 203, 891-898 (2014).

    22

    22. P. Xiao, W. Wu, Y. Yu and F. Zhao, International J. of Electrochem. Sci., 2, 149-157 (2007).

    23

    23. H. Beitollahi, J. B. Raoof and R. Hosseinzadeh, Electroanalysis, 23, 1934-1940 (2011).

    24

    24. X. Liu, Y. Peng, X. Qu, S. Ai, R. Han and X. Zhu, J. of Electroanalyt. Chem., 654, 72-78 (2011).

    25

    25. Q. Zhao, L. Guan, G. Zhennan and Z. Qiankun, Electroanalysis, 17, 85-88 (2005).

    26

    26. K. Yamamoto, G. Shi, T. Zhou, F. Xu, J. Xu, T. Kato, J.-Y. Jin and L. Jin, Analyst, 128, 249-254 (2003).

    27

    27. F. A. de Souza Ribeiro, C. R. T. Tarleyb, K. B. B. and A. C. Pereiraa, Sens. Actuators B, 185, 743-754 (2013).

    28

    28. H. S. Han, H. K. Lee, J. M. You, H. Jeong and S. Jeon, Sens. Actuators B, 190, 886-895 (2014).

    29

    29. R. A. Kamin and G. A. Wilson, Anal. Chem., 52, 1198 (1980).

    30

    30. C. S. Caruso, I. C. Vieira and O. F. Filho, O. Anal. Lett., 32, 39 (1999).

    31

    31. J. Wang and M. S. Lin, Electroanalysis, 1, 43 (1989).

    32

    32. J. M. Frre and B. L. A. Renard, J. of Theoretical Biology, 101, 387-400 (1983).

    33

    33. G. F. Fuhrmann and B. Vlker, Biomembranes, 1145, 180-182 (1993).

    34

    34. M. D. P. T. Sotomayor, A. A. Tanaka and A. T. Kubota, J. Electroanal. Chem., 536, 71-81 (2002).

    35

    35. F. A. S. Ribeiroa, C. R. T. Tarleyb, K. B. Borgesa and A. C. Pereira, Sensors and Actuators B, 185, 743-754 (2013).

    상단으로 이동

    Analytical Science and Technology