바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Notes on the biomass expansion factors of Quercus mongolica and Quercus variabilis forests in Korea

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2012, v.35 no.3, pp.243-249
Xiaodong Li (Jiangxi Agricultural University)





  • Downloaded
  • Viewed

Abstract

Biomass expansion factors, which convert timber volume (or dry weight) to biomass, are used for estimating the forest biomass and accounting for the carbon budget at a regional or national scale. We estimated the biomass conversion and expansion factors (BCEF), biomass expansion factors (BEF), root to shoot ratio (R), and ecosystem biomass expansion factor (EBEF) for Quercus mongolica Fisch. and Quercus variabilis Bl. forests based on publications in Korea. The mean BCEF, BEF, and R for Q. mongolica was 1.0383 Mg/m3 (N = 27; standard deviation [SD], 0.5515), 1.3572 (N = 27; SD,0.1355), and 0.2017 (N = 32; SD, 0.0447), respectively. The mean BCEF, BEF, and R for Q. variabilis was 0.7164 Mg/m3 (N = 17; SD, 0.3232), 1.2464 (N = 17; SD, 0.0823), and 0.1660 (N = 8; SD, 0.0632), respectively. The mean EBEF, as a simple method for estimating the ground vegetation biomass, was 1.0216 (N = 7; SD, 0.0232) for Q. mongolica forest ecosystems,and 1.0496 (N = 8; SD, 0.0725) for Q. variabilis forest ecosystems. The biomass expansion factor values in this study may be better estimates of forest biomass in Q. mongolica or Q. variabilis forests of Korea compared with the default values given by the Intergovernmental Panel on Climate Change (IPCC).

keywords
biomass conversion factor, biomass expansion factor, Quercus mongolica, Quercus variabilis, root/shoot ratio

Reference

1.

Avery TE, Burkhart HE. 1983. Forest Measurements. 3rd ed. McGraw-Hill, New York.

2.

Chi YJ. 2001. Study on the wood degrading ability of 64 woodrotting fungi in the northeast forestry reserves of China. Sci Silvae Sin 37: 107-112.

3.

Chi YJ, Liu ZH, Bao FC. 2004. Populations and communities of microorganisms growing on wood and their succession regulations. J Fungal Res 2: 51-57.

4.

Choi SD, Lee K, Chang YS. 2002. Large rate of uptake of atmospheric carbon dioxide by planted forest biomass in Korea. Global Biogeochem Cycles 16: 1089.

5.

Choi YC, Park IH. 1993. Biomass and net production of a natural Quercus variabilis forest and a Populus alba×P. glandulosa plantation at Mt. Mohu area in Chonnam. J Korean For Soc 82: 188-194.

6.

Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze ED, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ. 2008. Carbon accumulation in European forests. Nat Geosci 1: 425-429.

7.

Fang J, Chen A, Peng C, Zhao S, Ci L. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292: 2320-2322.

8.

Fang JY, Wang GG, Liu GH, Xu SL. 1998. Forest biomass of China: an estimate based on the biomass-volume relationship. Ecol Appl 8: 1084-1091.

9.

Fang JY, Wang ZM. 2001. Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass. Ecol Res 16: 587-592.

10.

Guo Z, Fang J, Pan Y, Birdsey R. 2010. Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. For Ecol Manag 259: 1225-1231.

11.

Intergovernmental Panel on Climate Change (IPCC). 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry, Prepared by the National Greenhouse Gas Inventories Programme (Peman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F, eds). Institute for Global Environmental Strategies (IGES) for the IPCC, Hayama.

12.

Intergovernmental Panel on Climate Change (IPCC). 2006. Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme (Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, eds). Institute for Global Environmental Strategies (IGES) for the IPCC, Hayama.

13.

Korea Forest Service. 2009. Stem Volume Table. Korea Forest Service, Seoul.

14.

Kwon KC, Lee DK. 2006a. Above- and below-ground biomass and energy content of Quercus mongolica. J Korean For Energy 25: 31-38.

15.

Kwon KC, Lee DK. 2006b. Biomass and annual net production of Quercus mongolica stands in Mt. Joongwang with respect to altitude and aspect. J Korean For Soc 95: 398-404.

16.

Kwon KC, Lee DK. 2006c. Biomass and energy content of Quercus mongolica stands in Gwangyang and Jeju areas. Mokchae Konghak 34: 54-65.

17.

Lee DK, Kim GT. 1997. Tree form and biomass allocation of Quercus species, Larix leptolepis (Sieb. et Zucc.) Gordon and Pinus koraiensis Sieb. et Zucc. in Kwangju-gun, Kyunggi-do. J Korean For Soc 86: 208-213.

18.

Lee DK, Kwon KC. 2006. Biomass and annual net primary production of Quercus mongolica stands in Pyungchang and Jecheon areas. J Korean For Soc 95: 309-315.

19.

Lee KJ, Park IH. 1987. Primary production and nutrients distribution in 22-year-old Pinus koraiensis and Quercus mongolica stands in Kwangju District. J Korean For Energy 7: 11-21.

20.

Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J. 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manag 188: 211-224.

21.

Li X, Yi MJ, Jeong MJ, Son Y, Park PS, Lee KH, Son YM, Kim RH. 2010a. Biomass expansion factors for Pinus koraiensis forests in Korea. J Korean For Soc 99: 693-697.

22.

Li X, Yi MJ, Son Y, Jin G, Han SS. 2010b. Forest biomass carbon accumulation in Korea from 1954 to 2007. Scand J Forest Res 25: 554-563.

23.

Li X, Yi MJ, Son Y, Park PS, Lee KH, Son YM, Kim RH, Jeong MJ. 2010c. Biomass expansion factors of natural Japanese red pine (Pinus densiflora) forests in Korea. J Plant Biol 53: 381-386.

24.

Li X, Yi MJ, Son Y, Park PS, Lee KH, Son YM, Kim RH, Jeong MJ. 2011. Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in central Korea. J Plant Biol 54: 33-42.

25.

Nabuurs GJ, Hengeveld GM, Van der Werf DC, Heidema AH. 2010. European forest carbon balance assessed with inventory based methods: an introduction to a special section. For Ecol Manag 260: 239-240.

26.

Park GS. 1999. Aboveground and soil carbon storages in Quercus mongolica and Quercus variabilis natural forest ecosystems in Chungju. J Korean For Soc 88: 93-100.

27.

Park GS. 2003. Biomass and net primary production of Quercus mongolica stands in Kwangyang, Pyungchang, and Youngdong areas. J Korean For Soc 92: 567-574.

28.

Park GS, Lee SW. 2001. Biomass and net primary production of Quercus variabilis natural forest ecosystems in Gongju, Pohang, and Yangyang areas. J Korean For Soc 90: 692-698.

29.

Park IH, Moon GS. 1994. Biomass, net production and biomass estimation equations in some natural Quercus forests. J Korean For Soc 83: 246-253.

30.

Park IH, Kim DY, Son YH, Yi MJ, Jin HO, Choi YH. 2005a. Biomass and net production of a natural Quercus mongolica forest in Namsan, Seoul. Korean Environ Ecol 19: 299-304.

31.

Park IH, Lee DK, Lee KJ, Moon GS. 1996. Growth, biomass and net production of Quercus species (1): with reference to natural stands of Quercus variabilis, Q. acutissima, Q. dentata, and Q. mongolica in Kwangju, Kyonggido. J Korean For Soc 85: 76-83.

32.

Park IH, Seo YK, Kim DY, Son YH, Yi MJ, Jin HO. 2003. Biomass and net production of a Quercus mongolica stand and a Quercus variabilis stand in Chuncheon, Kangwondo. J Korean For Soc 92: 52-57.

33.

Park IH, Son Y, Kim DY, Jin HO, Yi MJ, Kim RH, Hwang JO. 2005b. Biomass and production of a naturally regenerated oak forest in southern Korea. Ecol Res 20: 227-231.

34.

Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski C. 1997. Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Sci 43: 424-434.

35.

Somogyi Z, Cienciala E, Mäkipää R, Muukkonen P, Lehtonen A,Weiss P. 2007. Indirect methods of large-scale forest biomass estimation. Eur J For Res 126:197-207.

36.

Son Y, Kim DY, Park IH, Yi MJ, Jin HO. 2007a. Production and Nutrient Cycling of Oak Forests in Korea: A Case Study of Quercus mongolica and Q. variabilis stands. Kangwon National University Press, Chuncheon, pp 51-149.

37.

Son Y, Park IH, Jin HO, Yi MJ, Kim DY, Kim RH, Hwang JO. 2004a. Biomass and nutrient cycling of natural oak forests in Korea. In: Ecological Issues in a Changing World: Status, Response and Strategy (Hong SK, Lee JA, Ihm BS, Farina A, Son Y, Kim ES, Choe JC, eds). Kluwer Publishing, Dordrecht, pp 217-232.

38.

Son Y, Park IH, Yi MJ, Jin HO, Kim DY, Kim RH, Hwang JO. 2004b. Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecol Res 19: 21-28.

39.

Son YM, Lee KH, Kim RH. 2007b. Estimation of forest biomass in Korea. J Korean For Soc 96: 477-482.

40.

Son YM, Lee KH, Park IH, Lee YJ, Kim DK, Seo JH. 2005. Assessment of carbon stock using biomass expansion factor by major species. Korean J For Meas 8: 91-98.

41.

Song CY, Chang KS, Park KS, Lee SW. 1997. Analysis of carbon fixation in natural forests of Quercus mongolica and Quercus variabilis. J Korean For Soc 86: 35-45.

42.

Song CY, Lee SW. 1996. Biomass and net primary production in natural forests of Quercus mongolica and Quercus variabilis. J Korean For Soc 85: 443-452.

43.

Van Camp N, Walle IV, Mertens J, De Neve S, Samson R, Lust N, Lemeur R, Boeckx P, Lootens P, Beheydt D, Mestdagh I, Sleutel S, Verbeeck H, Van Cleemput O, Hofman G, Carlier L. 2004. Inventory-based carbon stock of Flemish forest: a comparison of European biomass expansion factors. Ann For Sci 61: 677-682.

44.

Yi MJ. 2003. Soil CO2 evolution in Quercus variabilis and Quercus mongolica forests in Chunchon, Kangwon Province. J Korean For Soc 92: 263-269.

Journal of Ecology and Environment