We estimated phenotypic selection on the height and number of flowering-stalks in a rosette annual Cardamine hirsuta by applying path analysis to the data collected at three natural populations located in central Japan. The path from rosette size was positively connected with the fruit production through the both height and number of flowering-stalks. In the all three populations, the paths from the number of stalks were more strongly connected with the fruit production than from the height of stalks. The paths from the rosette size showed similar magnitude with the number of stalks and the height of stalks. The direct path from rosette size to the fruit production was detected only at one site. These results suggest stronger phenotypic selection on the rosette size through the number of stalks than the height of stalks. The lateral branching rather than increment of individual inflorescence size is the major response to control the fruit production for C. hirsuta growing in a natural habitat.
Oryzias latipes and Oryzias sinensis are indigenous species found in Japan, China, and other East Asian countries, including Korea. Based on morphological differences, the species have been classified distinctly. However, the range of morphological characters such as the number of gill rakers, vertebrae, and spots on the lateral body overlaps and is too vague for clear identification, so their classification based on their morphological characteristics remains uncertain. In this study, the mitochondrial cytochrome oxidase subunit I (COI) gene, which is used for DNA barcoding, was applied to clarify interspecific variation of O. latipes and O. sinensis. Intraspecific genetic diversity was calculated to identify correlations with geographic distributions. We studied two species collected from 55 locations in Korea. All individuals carried a 679-base pair gene without deletion or insertion. Between species, 525 base pairs of the gene were shared. The Kimura two parameter (K2P) distance of O. latipes and O. sinensis was 0.41% and 1.39%, respectively. Mean divergence within genera was 23.5%. Therefore, the species were clearly different. The distance between O. latipes and O. sinensis was 14.0%, which is the closest within genera. Interestingly O. latipes from the Japanese and Korean group represented 16.5% distant. These results were derived from geohistorical and anthropogenic environmental factors. The O. latipes haplotypes were joined in only one group, but O. sinensis was divided into two groups, one is found in the Han River and upper Geum River watershed; the other is found in the remaining South Korean watersheds. Further studies will address the causes for geographic speciation of O. sinensis haplotypes.
A Two-year field experiment was carried out in 2009 and 2010 to evaluate the effects of different densities of wild oat and nitrogen (N) rates on oilseed rape yield and yield components. Experimental design was split plot with three replications. Increased nitrogen rates up to 150 kg N/ha caused an increase in oilseed rape grain yield in weed-free plots (4.26 t/ha;1t = 103 kg), while even at the lowest density of wild oat (15 plants/m2), increasing N fertilizer only up to 50 kg/ha led to a significant increase in grain yield. Wild oat growth was favored by high levels of N. Intraspecific competition reduced biomass, 100-seed weight and number of tillers of wild oat. Both lower N rate and intraspecific competition had negative effect on wild oat growth but the weed was still able to produce a considerable number of tillers and vigorous seeds. It showed that wild oat possess a notable adaptive plasticity and can allocate a greater proportion of its resource toward reproductive organs even under resource shortage conditions and, thus, it may increase the competitive ability of the weed over the crop.Our results suggest that effective weed management should be done to prevent wild oat seed production in crops preceding oilseed rape as well as to control the weed at early season in oilseed rape fields.
Two varieties of Aucuba japonica differ in ways that can be considered adaptive to differing geo-climatic conditions in their respective distribution ranges. Irrespective of growth stage, the mean leaf size of A. japonica var. japonica was significantly larger than A. japonica var. borealis. Smaller leaf size and ultimately smaller stature of A. japonica var. borealis are an advantage under the higher snow load and lower temperatures in the forests along the East Sea where the variety grows. Snow load also acted as an important driving force for structural modifications of A. japonica var. borealis from cellular level in leaves to the organization of branch extension growth. Global warming by changing snowfall patterns in Japan may lead to range shifts in the two varieties of A. japonica.
Dissolved organic carbon (DOC) concentrations and zooplankton and particulate organic matter (POM) δ13C values were measured in five reservoirs in Korea. Zooplankton δ13C and POM δ13C showed large range from -33‰ to -22‰ and a significant difference among the reservoirs. One eutrophic reservoir, Lake Masan, showed unique characteristics with the highest zooplankton density, the highest δ13C, and the highest DOC. Zooplankton δ13C was similar to POM δ13C, implying that zooplankton occupies substantial portion of POM or that zooplankton isotopic composition is related to selective grazing and assimilation of food sources from bulk POM. Except Lake Masan zooplankton δ13C values were negatively correlated to DOC concentration in four reservoirs with mostly forest land use. This pattern can be probably attributed to intensive agricultural land use in the watershed of Lake Masan compared to the mostly forest land use in the other watersheds. Understanding the relationship between zooplankton δ13C values and the origin of organic matter associated with watershed characteristics will be valuable to better understand trophic relationships in reservoirs in the summer monsoon region.
Altitudinal patterns of plant species richness and the effects of area, the mid-domain effect, climatic variables, net primary productivity and latitude on observed richness patterns along the ridge of the Baekdudaegan Mountains, South Korea were studied. Data were collected from 1,100 plots along a 200 to 1,900 m altitudinal gradient on the ridge. A total of 802 plant species from 97 families and 342 genera were recorded. Common and rare species accounted for 91%and 9%, respectively, of the total plant species. The altitudinal patterns of species richness for total, common and rare plants showed distinctly hump-shaped patterns, although the absolute altitudes of the richness peaks varied somewhat among plant groups. The mid-domain effect was the most powerful explanatory variable for total and common species richness, whereas climatic variables were better predictors for rare plant richness. No effect of latitude on species richness was observed. Our study suggests that the mid-domain effect is a better predictor for wide-ranging species such as common species, whereas climatic variables are more important factors for range-restricted species such as rare species. The mechanisms underlying these richness patterns may reflect fundamental differences in the biology and ecology of different plant groups.
Cicuta virosa L. (Apiaceae) is a perennial emergent plant designated as an endangered species in South Korea. According to the former records, only four natural habitats remain in South Korea. A former study suggested that three of four populations (Pyeongchang: PC, Hoengseong: HS, Gunsan: GS) would be classified as different ecotypes based on their different morphological characteristics and life cycle under different environmental conditions. To evaluate this suggestion, we estimated genetic diversity in each population and distance among three populations by random amplification of polymorphic DNA. Seven random primers generated a total of 61 different banding positions, 36 (59%) of them were polymorphic. Nei’s gene diversity and the Shannon diversity index increased in the order of PC < HS < GS, which is the same order of population size. In the two-dimensional (2D) plot of first two principal components in principal component analysis with the presence of 61 loci, individuals could be grouped as three populations easily (proportion of variance = 0.6125). Nei’s genetic distance for the three populations showed the same tendency with the geographical distance within three populations. And it is also similar to the result of discriminant analysis with the morphological or life-cycle factors from the previous study. From the results, we concluded that three different populations of C. virosa should be classified as ecotypes based on not only morphology and phenology but genetic differences in terms of diversity and distance as well.