바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

미세조류 3종의 먹이에 따른 피조개 Scapharca broughtonii 유생과 부착치패의 성장과 생존

Effect of Three Microalgal Species on Growth and Survival of Larvae and Spat of Ark Shell Scapharca broughtonii

초록

I. galbana, P. lutheri 및 C. simplex 3종을 먹이로 공급하며, 미세조류 종류에 따른 피조개 유생과 부착치패의 성장과 생존율 등을 비교하였다. 서로 다른 미세조류 3종을 단일 또는 혼합하여 먹이로 공급한 피조개 유생의 성장은 혼합 공급구에서 가장 빠르게 나타내었고, 단일 공급구 중에서 C. simplex 공급구에서 가장 높은 성장을 보였다. 또 유생의 생존율은 혼합 공급구에서 <TEX>$27.4{\pm}5.3%$</TEX>로 가장 높게 나타내었고, 단일 공급구 중에서 C. simplex 공급구에서 <TEX>$14.5{\pm}2.3%$</TEX>로 가장 높았다. I. galbana, P. lutheri, C. simplex 3종을 단일 또는 동일비율로 혼합한 미세조류의 지방산 조성은 EPA의 경우 C. simplex에서만 <TEX>$25.9{\pm}0.64%$</TEX>로 나타났고, 다불포화지방산(PUFA)과 n-3 HUFA 함량은 C. simplex에서 가장 높게 나타났다. 또 이들 미세조류를 먹이로 공급한 피조개 부착치패의 경우 C. simplex 공급구에서 포화지방산과 AA 함량이 유의하게 높았다. 이와 같은 C. simplex의 지방산 조성이 피조개 유생과 부착치패의 성장과 생존율의 원인으로 판단된다. 따라서 단일종으로는 C. simplex가 가장 적합하나 3종을 혼합하여 공급하는 것이 더 좋은 먹이효율을 유도할 수 있다.

keywords
Ark Shell, Scapharca broughtoni, Larvae and Spat, Microalgal Diets, Growth and Survival

Abstract

I. galbana, P. lutheri 및 C. simplex 3종을 먹이로 공급하며, 미세조류 종류에 따른 피조개 유생과 부착치패의 성장과생존율 등을 비교하였다. 서로 다른 미세조류 3종을 단일 또는 혼합하여 먹이로 공급한 피조개 유생의 성장은 혼합 공급구에서 가장 빠르게 나타내었고, 단일 공급구 중에서 C. simplex 공급구에서 가장 높은성장을 보였다. 또 유생의 생존율은 혼합 공급구에서 27.4 ±5.3%로 가장 높게 나타내었고, 단일 공급구 중에서 C. simplex 공급구에서 14.5 ± 2.3%로 가장 높았다. I. galbana, P. lutheri, C. simplex 3종을 단일 또는 동일비율로 혼합한 미세조류의 지방산 조성은 EPA의 경우 C. simplex에서만 25.9 ± 0.64%로 나타났고, 다불포화지방산(PUFA) 과 n–3 HUFA 함량은 C. simplex에서 가장 높게나타났다. 또 이들 미세조류를 먹이로 공급한 피조개 부착치패의 경우C. simplex 공급구에서 포화지방산과 AA 함량이 유의하게높았다. 이와 같은 C. simplex의 지방산 조성이 피조개 유생과 부착치패의 성장과 생존율의 원인으로 판단된다. 따라서 단일종으로는 C. simplex가 가장 적합하나 3종을 혼합하여 공급하는 것이 더 좋은 먹이효율을 유도할 수 있다.

keywords
Ark Shell, Scapharca broughtonii, Larvae and Spat, Microalgal Diets, Growth and Survival

참고문헌

1.

Ballantine, J.A., Lavis, A. and Morris, R.J. (1979) Sterols of the phytoplankton-effects of illumination and growth stage. Phytochemistry, 18: 1459-1466.

2.

Brown, M.R., Jeffrey, S.W. and Garland, C.D. (1989) Nutritional aspects of microalgae used in mariculture: a literature review. C.S.I.R.O Marine Laboratories Report 205. C.S.I.R.O., Australia, 44pp.

3.

Brown, M.R., Jeffrey, S.W., Volkman, J.K. and Dunstan, G.A. (1997) Nutritional properties of microalgae for mariculture. Aquaculture, 151: 315-331.

4.

Castell, J.D., Bell, J.G., Tocher, D.R. and Sargent, J.R. (1994) Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot (Scophthalmus maximus). Aquaculture, 128: 315-333.

5.

Cheong, S.C., Kang, H.W. and Lee, J.M. (1982) Experiments on the early artificial seedling production of ark shell Anadara broughtonii (SCHRENCK). Bulletin of the national Fisheries Research and Development, 28: 185-197. [in Korean]

6.

Coultate, T.P. (1989) Food : the chemistry of its components. Royal Society of Chemistry Editiors, Letchworth, Herts (England), 325pp.

7.

Delaunay, F., Marty, Y., Moal, J. and Samain, J.F. (1992) Growth and lipid class composition of Pecten maximus (L) Larvae grown under hatchery conditions. Journal of Experimental Marine Biology and Ecology, 163: 209-219.

8.

De Pauw, N., Morales, J. and Persoone, G. (1984) Mass culture of microalgae in Aquaculture systems : progress and constraints. Hydrobiologia, 116/117: 121-134.

9.

Duncan, D.B. (1955) Multiple-range and multiple F tests. Biometrics, 11: 1-42.

10.

Enright, C.T., Newkirk, G.F., Craigiel, J.S. and Castell, J.D. (1986) Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. Journal of Experimental Marine Biology and Ecology, 96: 1-13.

11.

Epifanio, C.E. (1979) Comparison of yeast and algal diets for bivalve molluscs. Aquaculture, 16: 187-192.

12.

Gallager, S.M. and Mann, R. (1986) Growth and survival of larvae of Mercenaria mercenaria (L.) and Crassostrea virginica (Gmelin) relative to brood conditioning and lipid content of eggs. Aquaculture, 56: 105-121.

13.

Helm, M.M. and Millican, P.F. (1977) Experiments in the hatchery rearing of Pacific oyster larvae (Crassostrea gigas Thunberg). Aquaculture, 11: 1-12.

14.

Helm, M.M. and Laing, L. (1987) Preliminary observation on the nutritional value of "Tahiti Isochrysis" to bivalve larvae. Aquaculture, 62: 281-288.

15.

His, E., Robert, R. and Dinet, A. (1989) Combined effects of temperature and salinity on fed and starved larvae of the Mediterranean mussel Mytilus galloprivincialis and the Japanese oyster Crassostrea gigas. Marine Biology, 100: 455-463.

16.

Holland, D.L. (1978) Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. In: Malins, D.C. and Sargent, J.R. (Eds.), Biochemical and Biophysical Perspectives in Marine Biology, Vol 4, Academic Press, London and New York, 85-123.

17.

Hur, Y.B. (2004) Dietary value of microalgae for larvae culture of Pacific oyster, Crassostrea gigas. Ph.D. thesis, Pukyong National University, 133pp. [in Korean]

18.

Hur, Y.B., Min, K.S., Kim, T.E., Lee, S.J. and Hur, S.B. (2008) Larvae growth and biochemical composition change of the Pacific oyster Crassostrea gigas, larvae during artificial seed production. Journal of Aquaculture, 21: 203-212. [in Korean]

19.

Imai, S. and Nishikawa, M.S. (1969) Seedling production of Scallop, Patinopecten yessoensis and Ark shell, Anadara broughtonii. Japanese Society for Aquaculture Research, 16: 309-316.

20.

Iwamoto, H. and Sugimoto, H. (1955) Fat synthesis in unicellular algae: Part Ⅱ. Chemical composition of nitrogen deficient Chlorella cells. Bulletin of the Agricultural and Chemical Society Japan, 19: 247-252.

21.

Laing, I. (1995) Effect of food supply on oyster spatfall. Aquaculture, 131: 315-324.

22.

Langdon, C.J. and Waldock, M.J. (1981) The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas. Journal of Marine Biological Association of the united Kingdom, 61: 431-448.

23.

Langton, R.W. and Mckey, G.U. (1976) Growth of Crassostrea gigas (Thungberg) spat under different feeding regimes in hatchery. Aquaculture, 7: 225-233.

24.

Lannan, C.J. (1980a) Broodstock management of Crassostrea gigas. Ⅰ. Genetic and environmental variation in survival in the larval rearing system. Aquaculture, 21: 323-336.

25.

Lannan, C.J. (1980b) Broodstock management of Crassostrea gigas. Ⅲ. Selective breeding for improved larval survival. Aquaculture, 21: 347-351.

26.

Loosanoff, V.L. (1950) Rate of water pumping and shell movements of oyster in relation to temperature (Abstract). The Anatomical Record, 108: 620pp.

27.

Loosanoff, V.L. and Davis, H.C. (1963) Rearing of bivalve molluscs. Advanced Marine Biology, 1: 1-136.

28.

Martínez, L.A., Caceres, E., Uribe, E. and Diaz, M.A. (1995) Effects of different feeding regimes on larval growth and the energy budget of juvenile Chilean scallops, Argopecten purpuratus Lamarck. Aquaculture, 132: 313-323.

29.

Marty, Y., Delaunay, F., Moal, J. and Samain, J.F. (1992) Changes in the fatty acid composition of Pecten maximus (L) during larval development. Journal of Experimental Marine Biology and Ecology, 163: 221-234.

30.

Min, B.H. (2012) Dietary value of three microalgal species for seedling production of the Ark shell Scapharca broughtonii. Ph.D. thesis, Pukyong National University, 118pp. [in Korean]

31.

Min, K.S., Chang, Y.J., Park, D.W., Jung, C.G., Kim, D.H. and Kim, G.H. (1995) Studies on Rearing conditions for mass seedling production in Pacific oyster, Crassostrea gigas. Bulletin of the national Fisheries Research and Development, 49: 91-111. [in Korean]

32.

Nell, J.A. and Holliday, J.E. 1988. Effects of salinity on the growth and survival of Sydney rock oyster (Saccostrea commercialis) and Pacific oyster (Crassostrea gigas) larvae and spat. Aquaculture, 68: 39-44.

33.

O'Connor, W.A., Nell, J.A. and Diemar, J.A. (1992) The evaluation of twelve algal species as food for juvenile Sydney rock oysters Saccostrea commercialis (Iredale & Roughley). Aquaculture, 108: 277-283.

34.

Parrish, C.C. (1987) Separation of aquatic lipid classes by Chromarod thin-layer chromatography with measurement by latroscan flame ionization detection. Canadian Journal of Fisheries and Aquatic Sciences, 44: 722-731.

35.

Powell, E.N., Bocheneck, E.A., Klinck, J.M. and Hoofmann, E.E. (2002) Influence of food quality and quantity on the growth and development of Crassostrea gigas larvae a modeling approach. Aquaculture, 210: 89-117.

36.

Pyen, C.K., Rho, Y.G. and Yoo, Y.K. (1976) Studies on spat collection and rearing of the larvae, Anadara broughtonii (SCHRENCK) in tank. Bulletin of the national Fisheries Research and Development, 15: 7-20. [in Korean]

37.

Rezeq, T.A. and James, C.M. (1987) Production and nutritional quality of the rotifer Brachionus plicatilis in relation to different cell densities of marine Chlorella sp. Hydrobiologia, 147: 257-261.

38.

Thompson, P.A., Guo, M. and Harrison, P.J. (1993) The influence of irradiance on the biochemical composition of three phytoplankton species and their nutritional value for larvae of the Pacific oyster (Crassostrea gigas). Marine Biology, 117: 259-268.

39.

Volkman, J.K., Brown, M.R., Dunstan, G.A. and Jeffrey, S.W. (1993) The biochemical composition of marine microalgae from the class eustigmatophyceae. Journal of Phycology, 29: 69-78.

40.

Walne, P.R. (1974) Culture of bivalve molluscs. Whitefriars Press Ltd., London and Tondridge, 173pp.

41.

Watanabe, T., Kitajima, C. and Fujita, S. (1983) Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34: 115-143.

42.

Web, K.L. and Chu, F.L.E. (1983) Phytoplankton as a food source for bivalve larvae. In: Pruder, G.D., Langdon, C., Conklin, D. (Eds.), Proceedings of the 2nd International Conference of Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition. World Mariculture Society Special Publication, 2: 272-291.

43.

Wilson, J.H. (1978) The food value of Phaeodactylum tricornutum Bohlin to the larvae of Ostrea edulis L. and Crassostrea gigas Thunberg. Aquaculture, 13: 313-323.

logo