• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Analysis of volatile aroma compounds from vanilla perfume using headspace disk type monolithic material sorptive extraction

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2011, v.24 no.6, pp.421-428
https://doi.org/10.5806/AST.2011.24.6.421


  • Downloaded
  • Viewed

Abstract

In this study, headspace disk type monolithic material sorptive extraction (HS-MMSE) was developed,validated and applied to the analysis of volatile aroma compounds from vanilla perfume by gas chromatography -mass spectrometry (GC/MS). HS-MMSE uses monolithic material (MonoTrap) based on silica bonded with octadecyl silane (ODS) and activated carbon as a sorbent. Aroma compounds was adsorbed onto the MonoTrap in headspace and extracted by only 100 μL of solvent. Total 12 volatile compounds from vanilla perfume were successfully analyzed using HS-MMSE. The influence of extractive parameters was investigated and optimized,using benzyl acetate, linalyl acetate, vanillin, ethyl vanillin as target compounds. Under the optimum condition,the limit of detection (S/N = 3) and the limit of quantification (S/N = 10) of proposed method for the target compounds were obtained within the range of 8.35~13.76 ng and 27.82~45.88 ng, respectively. The method showed good linearity with correlation coefficient more than 0.9888, satisfactory recovery and reproducibility. These results showed that HS-MMSE using disk type MonoTrap is a new promising technique for the analysis of volatile aroma compounds from vanilla perfume.

keywords
monolithic material, MonoTrap, GC/MS, vanilla perfume, aroma


Reference

1

1. A. Perez-Silva, E. Odoux, P. Bart, F. Ribeyre, G. Rodriguez-Jimenes, V. Robles-Olvera, M. A. Garcia-Alvarado and Z. Gunata, Food Chem., 99(4), 728-735 (2006).

2

2. D. Havkin-Frenkel and F. C. Belanger, Handbook of Vanilla Science and Technology, Wiley, 2011.

3

3. E. Cicchetti and A. Chaintreau, J. Sep. Sci., 32(11), 1957-1964 (2009).

4

4. D. Jadhav, B. N. Rekha, P. R. Gogate and V. K. Rathd, J. Food Eng., 93(4), 421-426 (2009).

5

5. T. Sostaric, M. C. Boyce and E. E. Spickett, J. Agric. Food Chem., 48(12), 5802-5807 (2000).

6

6. M. C. Boyce, P. R. Haddad and T. Sostaric, Anal. Chim. Acta, 485(2), 179-168 (2003).

7

7. A. Sato, K. Sotomaru and M. Takeda, China-Japan-Korea Symposium on Analytical Chemistry Conference, Makuhari, Chiba, Japan. Aug. 31-Sep. 2, 2009, Abstract p. 45.

8

8. H. J. Kim, K. Kim, N. S. Kim and D. S. Lee, J. Chromatogr. A, 902(2), 389-404 (2000).

9

9. M. M. Won, E. J. Cha, O. K. Yoon, N. S. Kim, K. Kim and D. S. Lee, Anal, Chim, Acta, 631(1), 54-61 (2009).

10

10. H. J. Jang, H. H. Son, E. J. Cha and D. S. Lee, China- Japan-Korea Symposium on Analytical Chemistry Conference, Makuhari, Chiba, Japan. Aug. 31-Sep. 2, 2009, Abstract p. 66.

11

11. X. Huang and D. Yuan, J. Chromatogr. A, 1154(1-2), 152-157 (2007).

12

12. O. G. Potter and E. F. Hilder, J. Sep. Sci., 31(11), 1881-1906 (2008).

13

13. M. A. Jochmann, M. P. Kmiecik and T. C. Schmidt, J. Chromatogr. A, 1115(1-2), 208-216 (2006).

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Analytical Science and Technology