Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Solubility of carbon dioxide in ionic liquids with methylsulfate anion

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2011, v.24 no.6, pp.467-476
https://doi.org/10.5806/AST.2011.24.6.467


  • Downloaded
  • Viewed

Abstract

Solubility data of carbon dioxide (CO_2) in the imidazolium-based ionic liquids with methylsulfate anion are presented at pressures up to about 45 MPa and at temperatures between 303.15 K and 343.15 K. The ionic liquids studied in this work were 1-ethyl-3-methylimidazolium methylsulfate ([emim][mSO_4]), 1-butyl-3-methylimidazolium methylsulfate ([bmim][mSO_4]). The solubilities of CO_2 were determined by measuring the bubble point or cloud point pressures of the binary mixtures using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. The equilibrium pressure increased very steeply at high CO_2compositions. The CO_2 solubility in ionic liquids increased with increase of the total length of alkyl chains attached to the imidazolium cation of the ionic liquids. The phase equilibrium data for the CO_2 + ionic liquid systems have been correlated using the Peng-Robinson equation of state.

keywords
ionic liquid, carbon dioxide, solubility, imidazolium, methylsulfate, Peng-Robinson equation of state


Reference

1

1. K. R. Seddon, A. Stark and M. S. Torres, Pure Appl.Chem., 72(12), 2275-2287 (2000).

2

2. W. Li, Z. Zhang, B. Han, S. Hu, J. Song, Y. Xie and X. Zhou, Green Chem., 10, 1142-1145 (2008).

3

3. E. K. Shin, B. C. Lee and J. S. Lim, J. Supercrit. Fluids, 45, 282-292 (2008).

4

4. E. K. Shin and B. C. Lee, J. Chem. Eng. Data, 53, 2728-2734 (2008).

5

5. J. M. Prausnitz, R. N. Lichtenthaler and E. G. de Azevedo, ‘Molecular Thermodynamics of Fluid-Phase Equilibria’, 3rd ed., Prentice-Hall, NJ, 1999.

6

6. J. O. Valderrama and R. E. Rojas, Ind. Eng. Chem. Res., 48, 6890-6900 (2009).

7

7. J. Winnick, Chemical Engineering Thermodynamics, John Wiley & Sons, New York, NY, 1997, pp. 451-463.

8

8. IMSL Math/Library: Fortran Subroutines for Mathematical Applications, Vol. 2, Visual Numerics, Inc., 1994.

9

9. X. Zhang, Z. Liu and W. Wang, AIChE J., 54, 2717-2728 (2008).

10

10. S. N. V. K. Aki, B. R. Mellein, E. M. Saurer and J. F. Brennecke, J. Phys. Chem. B., 108, 20355-20365 (2004).

11

11. C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke and E. J. Maginn, J. Am. Chem. Soc., 126, 5300-5308 (2004).

12

12. M. J. Muldoon, S. N. V. K. Aki, J. L. Anderson, J. K. Dixon and J. F. Brennecke, J. Phys. Chem. B., 111, 9001-9009 (2007).

13

13. X. Yuan, S. Zhang, J. Liu and X. Lu, Fluid Phase Equilib., 257, 195-200 (2007).

14

14. J. Tang, H. Tang, W. Sun, M. Radosz and Y. Shen, J. Polym. Sci. Part A: Poly. Chem., 43, 5477-5489 (2005).

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Analytical Science and Technology