• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

2D-QSAR analysis for hERG ion channel inhibitors

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2011, v.24 no.6, pp.533-543
https://doi.org/10.5806/AST.2011.24.6.533




  • Downloaded
  • Viewed

Abstract

The hERG (human ether-a-go-go related gene) ion channel is a main factor for cardiac repolarization, and the blockade of this channel could induce arrhythmia and sudden death. Therefore, potential hERG ion channel inhibitors are now a primary concern in the drug discovery process, and lots of efforts are focused on the minimizing the cardiotoxic side effect. In this study, IC_(50) data of 202 organic compounds in HEK (human embryonic kidney)cell from literatures were used to develop predictive 2D-QSAR model. Multiple linear regression (MLR), Support Vector Machine (SVM), and artificial neural network (ANN) were utilized to predict inhibition concentration of hERG ion channel as machine learning methods. Population based-forward selection method with cross-validation procedure was combined with each learning method and used to select best subset descriptors for each learning algorithm. The best model was ANN model based on 14 descriptors (R^2_(CV)=0.617, RMSECV=0.762, MAECV=0.583) and the MLR model could describe the structural characteristics of inhibitors and interaction with hERG receptors. The validation of QSAR models was evaluated through the 5-fold cross-validation and Y-scrambling test.

keywords
2D-QSAR, hERG ion channel inhibitor, machine learning, MLR, SVM, ANN, cross-validation


Reference

1

1. J. I. Vandenberg, B. D. Walker and T. J. Campbell, Trends Pharmacol. Sci., 22(5), 240-246 (2001).

2

2. M. Jalaie and D. D. Holsworth, Mini-Rev. Med. Chem., 5(12), 1083-1091 (2005).

3

3. S. B. Gunturi, K. Archana, A. Khandelwal and R. Narayanan, QSAR Combi. Sci., 27(11-12), 1305-1317 (2008).

4

4. K. Yoshida and T. Niwa, J. Chem. Inf. Model., 46(3), 1371-1378 (2006).

5

5. A. M. Doweyko, J. Comput.-Aided Mol. Des., 22(2), 81-89 (2008).

6

6. K. M. Thai and G. F. Ecker, Chem. Biol. Drug Des., 72(4), 279-289 (2008).

7

7. W. Bains, A. Basman and C. White, Prog. Biophys. Mol. Biol., 86(2), 205-233 (2004).

8

8. S. K. Lee, S. H. Park, I. H. Lee and K. T. No, PreADMET Ver.v2.0, BMDRC: Seoul, Korea, 2007.

9

9. K. T. No, J. A. Grant, M. S. Jhon and H. A. Scheraga, J. Phys. Chem., 94(11), 4740-4746 (1990).

10

10. K. T. No, J. A. Grant and H. A. Scheraga, J. Phys. Chem., 94(11), 4732-4739 (1990).

11

11. G. Schneider, W. Neidhart, T. Giller and G. Schmid, Angew. Chem. Int. Ed. Engl., 38(19), 2894-2896 (1999).

12

12. N. R. Draper and H. Smith, In ‘Applied Regression Analysis’, 2nd Ed., pp 294-379, John Wiley & Sons Inc., New York, 1981.

13

13. C. Cortes and V. Vapnik, Mach. Learn., 20(3), 273-297 (1995).

14

14. B. Schölkopf, A. J. Smola, R. C. Williamson and P. L. Bartlett, Neural Comput., 12(5), 1207-1245 (2000).

15

15. D. E. Rumelhart, G. E. Hinton and R. J. Williams, Nature, 323(6088), 533-536 (1986).

16

16. Rapidminer Ver.5.0, Rapid Miner is unquestionable the world-leading open-source system for data mining, Rapid-I: Dortmund, Germany, 2010.

17

17. B. L. Podlogar, I. Muegge and L. J. Brice, Curr. Opin. Drug Discovery Dev., 4(1), 102-109 (2001).

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Analytical Science and Technology