• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Prediction and analysis of acute fish toxicity of pesticides to the rainbow trout using 2D-QSAR

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2011, v.24 no.6, pp.544-555
https://doi.org/10.5806/AST.2011.24.6.544



  • Downloaded
  • Viewed

Abstract

The acute toxicity in the rainbow trout (Oncorhynchus mykiss) was analyzed and predicted using quantitative structure–activity relationships (QSAR). The aquatic toxicity, 96h LC_(50) (median lethal concentration)of 275 organic pesticides, was obtained from EU-funded project DEMETRA. Prediction models were derived from 558 2D molecular descriptors, calculated in PreADMET. The linear (multiple linear regression) and nonlinear (support vector machine and artificial neural network) learning methods were optimized by taking into account the statistical parameters between the experimental and predicted pLC50. After preprocessing, population based forward selection were used to select the best subsets of descriptors in the learning methods including 5-fold cross-validation procedure. The support vector machine model was used as the best model (R^2_(CV)=0.677,RMSECV=0.887, MSECV=0.674) and also correctly classified 87% for the training set according to EU regulation criteria. The MLR model could describe the structural characteristics of toxic chemicals and interaction with lipid membrane of fish. All the developed models were validated by 5 fold cross-validation and Yscrambling test.

keywords
pesticide, QSAR, acute fish toxicity, rainbow trout, cross-validation


Reference

1

1. J. Ahlers, F. Stock and B. Werschkun, Environ. Sci. Pollut. Res., 15(7), 565-572 (2008).

2

2. G. T. Miller, In ‘Sustaining the Earth’, 6th Ed., pp 211-216, Thompson Learning, Pacific Grove, CA, 2004.

3

3. OECD, ‘OECD Guidelines for Testing Chemicals, METHOD 203, Fish, Acute Toxicity Test’, Paris, 1984.

4

4. ‘Technical Guidance Document in support of Commission directive 93/67/EEC for new notified substances and Commission regulation (EC) No 1488/94 on risk assessment for existing substances’, Brussels, 1996.

5

5. J. S. Jaworska, M. Comber, C. Auer and C. J. Van Leeuwen, Environ. Health Perspect, 111(10), 1358-1360 (2003).

6

6. ‘Development of Environmental Modules for Evaluation of Toxicity of pesticide Residues in Agriculture (DEMETRA)’, project supported by the European Commission, Contract No. QLK5-CT-2002-00691.

7

7. A. Roncaglioni, E. Benfenati, E. Boriani and M. Clook, J. Environ. Sci. Health, Pt. B:Pestic., Food Contam., Agric. Wastes, 39(4), 641-652 (2004).

8

8. M. Casalegno, G. Sello and E. Benfenati, Chem. Res. Toxicol., 19(11), 1533-1539 (2006).

9

9. S. K. Lee, S. H. Park, I. H. Lee and K. T. No, PreADMET Ver.v2.0, BMDRC: Seoul, Korea, 2007.

10

10. G. Schneider, W. Neidhart, T. Giller and G. Schmid, Angew. Chem. Int. Ed. Engl., 38(19), 2894-2896 (1999).

11

11. N. R. Draper and H. Smith, In ‘Applied Regression Analysis’, 2nd Ed., pp 294-379, John Wiley & Sons Inc., New York, 1981.

12

12. C. Cortes and V. Vapnik, Mach. Learn., 20(3), 273-297 (1995).

13

13. B. Schölkopf, A. J. Smola, R. C. Williamson and P. L. Bartlett, Neural Comput., 12(5), 1207-1245 (2000).

14

14. D. E. Rumelhart, G. E. Hinton and R. J. Williams, Nature, 323(6088), 533-536 (1986).

15

15. Rapidminer Ver.5.0, Rapid Miner is unquestionable the world-leading open-source system for data mining., Rapid- I: Dortmund, Germany, 2010.

16

16. B. L. Podlogar, I. Muegge and L. J. Brice, Curr. Opi. Drug Dis. Dev., 4(1), 102-109 (2001).

17

17. A. K. Ghose, V. N. Viswanadhan and J. J. Wendoloski, J. Phys. Chem. A, 102(21), 3762-3772 (1998).

18

18. J. Huang and X. Fan, Mol. Pharm., 8(2), 600-608(2011).

19

19. T. Jager and S. A. L. M. Kooijman, Ecotoxicology, 18(2), 187-196 (2009).

20

20. P. Ertl, B. Rohde and P. Selzer, J. Med. Chem., 43(20), 3714-3717 (2000).

21

21. K. T. No, J. A. Grant, M. S. Jhon and H. A. Scheraga, J. Phys. Chem., 94(11), 4740-4746 (1990).

22

22. K. T. No, J. A. Grant and H. A. Scheraga, J. Phys. Chem., 94(11), 4732-4739 (1990).

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Analytical Science and Technology