Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Analysis of calmodulin binding property of IQ motifs of IQGAP1

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2011, v.24 no.6, pp.527-532
https://doi.org/10.5806/AST.2011.24.6.527

  • Downloaded
  • Viewed

Abstract

IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known Ca^(2+)-independent calmodulin (CaM) binding protein, is involved in various cellular functions such as cell proliferation and cell migration. IQGAP1 has four repeated IQ motifs, which are crucial for CaM binding. It has been shown that all four IQ motifs of IQGAP1 can bind to Ca^(2+)/CaM, while the third and fourth IQ motifs of IQGAP1 can bind to apoCaM. However, it has not been clear whether the CaM binding of IQ motifs of IQGAP1 was mediated directly or indirectly. In this study, we examined whether the binding between CaM and each IQ motif of IQGAP1 was direct in vitro. As a result, we found that IQ1 motif has a weak Ca^(2+)-dependent CaM binding. In contrast, IQ3 has a Ca^(2+)-dependent CaM binding. All other motifs have no significant CaM binding. We also found that IQ(2.7-3) and IQ(3.5-4.4) have CaM binding capacity. This finding indicates that IQ motifs of IQGAP1 plays a dynamic role via different motif interactions with Ca^(2+)/CaM or proCaM.

keywords
IQGAP1, IQ motif, calmodulin


Reference

1

1. J. Noritake, T. Watanabe, K. Sato, S. Wang and K. Kaibuchi, J. Cell. Sci., 118(Pt 10), 2085-2092 (2005).

2

2. C. D. White, M. D. Brown and D. B. Sacks, FEBS Lett., 583(12), 1817-1824 (2009).

3

3. M. W. Briggs and D. B. Sacks, FEBS Lett., 542(1-3), 7-11 (2003).

4

4. Y. D. Ho, J. L. Joyal, Z. Li and D. B. Sacks, J. Biol. Chem., 274(1), 464-470 (1999).

5

5. Z. Li, S. H. Kim, J. M. Higgins, M. B. Brenner and D. B. Sacks, J. Biol. Chem., 274(53), 37885-37892 (1999).

6

6. M. W. Briggs, Z. Li and D. B. Sacks, J. Biol. Chem. 277(9), 7453-7465 (2002).

7

7. S. C. Mateer, A. E. McDaniel, V. Nicolas, G. M. Habermacher, M. J. Lin, D. A. Cromer, M. E. King and G. S. Bloom, J. Biol. Chem., 277(14), 12324-12333 (2002).

8

8. A. R. Rhoads and F. Friedberg, FASEB J., 11(5), 331-340 (1997).

9

9. M. Bahler and A. Rhoads, FEBS Lett., 513(1), 107-113 (2002).

10

10. Z. Li and D. B. Sacks, J. Biol. Chem., 278(6), 4347-4352 (2003).

11

11. H. W. Jeong, Z. Li, M. D. Brown and D. B. Sacks, J. Biol. Chem., 282(28), 20752-20762 (2007).

12

12. A. Heil, A. R. Nazmi, M. Koltzscher, M. Poeter, J. Austermann, N. Assard, J. Baudier, K. Kaibuchi and V. Gerke, J. Biol. Chem. 286(9), 7227-7238 (2011).

13

13. S. Pathmanathan, S. F. Elliott, S. McSwiggen, B. Greer, P. Harriott, G. B. Irvine and D. J. Timson, Mol. Cell. Biochem., 318(1-2), 43-51 (2008).

14

14. D. J. Jang, B. Ban and J. A. Lee, Mols. Cells, in press (2011).

  • Downloaded
  • Viewed
  • 0KCI Citations
  • 0WOS Citations

Other articles from this issue

Recommanded Articles

상단으로 이동

Analytical Science and Technology