- P-ISSN 1225-0163
- E-ISSN 2288-8985
X-선 조형제인 이오프로마이드는 하천수에서 비교적 높은 검출 농도와 높은 검출 빈도로 검출되는 의약물질이다. 이오프로마이드를 전자선에 노출시킨 후 생성된 생성물의 화학 구조를 예측하였고분해 효율을 측정하였다. 이오프로마이드를 소량 첨가시킨 수용액 시료를 전자선(UELV-10-10S, klysotrn,10 MeV, 1 mA and 10 kW)에 노출시켰으며, LC/ESI-MS/MS 분석 후 질량스펙트럼을 해석함으로써 분해산물인 I_D_665와 I_D_663에 대한 화학적 구조 규명을 수행하였으며, 직렬식 질량분석에 의한 질량스펙트럼 토막이온의 생성 경로도 제안하였다. 0.3~5 kGy에 노출 시켰을 때 흡수선량의 증가에 따라서30.5 ~98.4%가 분해되었으며, 0.5~100 μg/kg의 농도에서 0.3 kGy의 전자선으로 조사하였을 경우 97.8~30%가 분해되었다. 전자선량이 높을수록 그리고 분석물질이 낮은 농도일수록 전사선 조사에 의한 이오프로마이드의 분해효율은 증가하였다.
Iopromide is an X-ray contrast agent that has been detected frequently with high concentration levelin surface waters. Structural characterization of degradation products and measurement of degradation efficiencyof iopromide by an electron beam irradiation were performed. For the fortified sample with iopromide, electronbeam irradiation (UELV-10-10S, klysotrn, 10 MeV, 1 mA and 10 kW) was performed. The chemical structuresof I_D_665 and I_D_663, which are degradation products of iopromide, were proposed by interpretation ofmass spectra and chromatograms by LC/ESI-MS/MS. The mass fragmentation pathways of mass spectra intandem mass spectrometry were also proposed. Iopromide was degraded 30.5~98.4% at dose of 0.3~5 kGy,and 97.8~30% in the concentration range 0.5~100 μg/kg at electron beam dose of 0.3 kGy, respectively. Thus,increased degradation efficiency of iopromide by electron beam irradiation was observed with a higher doseof electron beam and lower concentration.
1. K. Fent, A. A. Weston and D. Caminada, Aquat. Toxi-col., 76, 122-159 (2006).
2. S. J. Khan and J. E. Ongerth, Chemosphere, 54, 355-367 (2004).
3. B. Han, J. Ko, J. Kim, Y. Kim, W. Chung, I. E. Makarov, A. V. Ponomarev and A. K. Pikaev, Radiat. Phys. Chem., 64, 53-59 (2002).
4. Y. A. Maruthi1, N. L. Das, K. Hossain, K. P. Rawa, K. S. S. Sarma and S. Sabharwal, EJSD, 2, 1-18 (2013).
5. S. Hea, J. Wanga, L. Yeb, Y. Zhangb and J. Yub, Radiat. Phys. Chem., 105, 104-108 (2014).
6. T.-H. Kim, NICE, 27(2), 163-170 (2009).
7. M. Sprehe and S. U. Geissen, ATV-DVWK Schriftenreihe, 18, 257-248 (2000).
8. National Institute of Environmental Research, South Korea, Risk of Pharmaceuticals in Environmentals, 1410 (2010).
9. S. Perez, P. Elchhorn, M. D. Cellz and D. S. Aga, Anal. Chem. 78, 1866-1874 (2006).
10. A. Putschew, U. Miehe, A. S. Tellez and M. Jekel, Water Sci. Technol., 56(11), 159-165 (2007).
11. A. Haib and K. Kummerer, Chemosphere, 62, 294-302(2006).
12. T. S. Hartmann, R. Lange and H. Schewinfurth, Ecotoxicol. Environ. Saf., 42, 274-281 (1999).
13. S. Perez and D. Barcelo, Anal. Bioanal. Chem., 387, 1235-1246 (2007).
14. A. Boersma, B. Robinson, M. Stehouwer, and M. Troupos, Wyoming Clean Water Plant Tertiary Treatment Project Feasibility Study, 8, Dec (2012).
15. W. Kalsch, Sci. Total Environ., 255, 143-153 (1999).
16. M. Schulz, D. Loffler M. Wagner and T. A. Ternes, Environ. Sci. Techol., 42, 7207-7217 (2008).
17. L. B. Angela, K., Sungpyo and S. A. Diana, Environ. Sci. Technol., 40, 7367-7373 (2006).
18. M. Gros, C. Cruz-Morato, E. Marco-Urrea, P. Longree, H. Singer, M. Sarra, J. Hollender, T. Vicent, S. Rodriguez-Mozaz and D. Barcelo, Water Res., 60, 228-241(2014).
19. National Institute of Environmental Research, South Korea, A Study and Monitoring of Residual Pharmaceuticals (II), (2009).