Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Microwave-modified sol-gel preparation of La2(MoO4)3:Er3+/Yb3 particles and their upconversion photoluminescence properties

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2014, v.27 no.6, pp.314-320
https://doi.org/10.5806/AST.2014.27.6.314

  • Downloaded
  • Viewed

Abstract

La2-x(MoO4)3:Er3+/Yb3+ particles with doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+= 0.05, 0.1, 0.2 and Yb3+ = 0.2, 0.45) were successfully prepared by the microwave-modified sol-gel method,and the upconversion photoluminescence properties were investigated. Well-crystallized particles, formed afterheat-treatment at 900 °C for 16 h, showed a fine and homogeneous morphology with particle sizes of 2-5 μm. Under excitation at 980 nm, La1.7(MoO4)3:Er0.1Yb0.2 and La1.5(MoO4)3:Er0.05Yb0.45 particles exhibited a strong525 nm emission band, a weak 550 nm emission band in the green region, and a very weak 655 nm emissionband in the red region. The Raman spectra of the doped particles indicated the presence of strong peaks athigher frequencies of 752, 846, 922, 1358 and 1435 cm−1 and lower frequency of 314 cm−1 induced by thedisorder of the [MoO4]2− groups with the incorporation of the Er3+ and Yb3+ elements into the crystal latticeor by a new phase formation.

keywords
Microwave sol-gel, upconversion, photoluminescence, Raman spectroscopy


Reference

1

1. M. Wang, G. Abbineni, A. Clevenger, C. Mao and S. Xu, Nanomedicine: NBM, 7, 710-729 (2011).

2

2. Y. J. Chen, H. M. Zhu, Y. F. Lin, X. H. Gong, Z. D. Luo and Y. D. Huang, Opt. Mat., 35, 1422-1425 (2013).

3

3. M. Lin, Y. Zho, S. Wang, M, Liu, Z. Duan, Y. Chen, F. Li, F. Xu and T. Lu, Bio. Adv., 30, 1551-1561 (2012).

4

4. J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang and Q. Zhou, J. Lum., 134, 533-538 (2013).

5

5. J. Sun, Y. Lan, Z. Xia and H. Du, Opt. Mat., 33, 576-581 (2011).

6

6. C. Guo, H. K. Yang and J. H. Jeong, J. Lum., 130, 1390-1393 (2010).

7

7. J. Sun, J. Xian and H. Du, J. Phys. Chem. Sol., 72, 207-213 (2011).

8

8. V. K. Komarala, Y. Wang and M. Xiao, Chem. Phys. Lett., 490, 189-193 (2010).

9

9. J. Sun, J. Xian, Z. Xia and H. Du, J. Rare Earths, 28, 219-221 (2010).

10

10. L. Qin, Y. Huang, T, Tsuboi and H. J. Seo, Mat. Res. Bull., 47, 4498-4502 (2012).

11

11. Y. L. Yang, X. M. Li, W. L. Feng, W. L. Li and C. Y. Tao, J. Alloys Comps., 505, 239-242 (2010).

12

12. Y. Huang, L. Zhou and Z. Tang, Opt. Mat., 33, 777-782(2011).

13

13. Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng and R. Hua, Physica B, 407, 2556-2559 (2012).

14

14. Q. Chen, L. Qin, Z. Feng, R. Ge, X. Zhao and H. Xu, J. Rare Earths, 29, 843-848 (2011).

15

15. J. Zhang, X. Wang, X, Zhang, X. Zhao, X. Liu and L. Peng, Inog. Chem. Comm., 14, 1723-1727 (2011).

16

16. C. S. Lim, Mat. Chem. Phys., 140, 154-158 (2013).

17

17. S. Das, A. K. Mukhopadhyay, S. Datta and D. Basu, Bull. Mat. Sci., 32, 1-13 (2009).

18

18. C. S. Lim, Mat. Res. Bull., 47, 4220-4225 (2012).

19

19. W. Lu, L. Cheng, J. Sun, H. Zhong, X. Li, Y. Tian, J. Wan, Y. Zheng, L. Huang, T. Yu, H. Yu and B. Chen, Physica B, 405, 3284-3288 (2010).

20

20. C. S. Lim, Mat. Res. Bull., 48, 3805-3810 (2013)

21

21. J. Sun, B. Sue and H. Du, Infrar. Phys. Tech., 60, 10-14(2013).

22

22. Q. Sun, X. Chen, Z. Liu, F. Wang, Z. Jiang and C. Wang, J. Alloys Comps., 509, 5336-5340 (2012).

상단으로 이동

Analytical Science and Technology