Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Structural characterization and degradation efficiency of degradation products of iopromide by electron beam irradiation

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2014, v.27 no.6, pp.292-299
https://doi.org/10.5806/AST.2014.27.5.292


  • Downloaded
  • Viewed

Abstract

Iopromide is an X-ray contrast agent that has been detected frequently with high concentration levelin surface waters. Structural characterization of degradation products and measurement of degradation efficiencyof iopromide by an electron beam irradiation were performed. For the fortified sample with iopromide, electronbeam irradiation (UELV-10-10S, klysotrn, 10 MeV, 1 mA and 10 kW) was performed. The chemical structuresof I_D_665 and I_D_663, which are degradation products of iopromide, were proposed by interpretation ofmass spectra and chromatograms by LC/ESI-MS/MS. The mass fragmentation pathways of mass spectra intandem mass spectrometry were also proposed. Iopromide was degraded 30.5~98.4% at dose of 0.3~5 kGy,and 97.8~30% in the concentration range 0.5~100 μg/kg at electron beam dose of 0.3 kGy, respectively. Thus,increased degradation efficiency of iopromide by electron beam irradiation was observed with a higher doseof electron beam and lower concentration.

keywords
iopromide, electron beam, degradation products, degradation efficiency


Reference

1

1. K. Fent, A. A. Weston and D. Caminada, Aquat. Toxi-col., 76, 122-159 (2006).

2

2. S. J. Khan and J. E. Ongerth, Chemosphere, 54, 355-367 (2004).

3

3. B. Han, J. Ko, J. Kim, Y. Kim, W. Chung, I. E. Makarov, A. V. Ponomarev and A. K. Pikaev, Radiat. Phys. Chem., 64, 53-59 (2002).

4

4. Y. A. Maruthi1, N. L. Das, K. Hossain, K. P. Rawa, K. S. S. Sarma and S. Sabharwal, EJSD, 2, 1-18 (2013).

5

5. S. Hea, J. Wanga, L. Yeb, Y. Zhangb and J. Yub, Radiat. Phys. Chem., 105, 104-108 (2014).

6

6. T.-H. Kim, NICE, 27(2), 163-170 (2009).

7

7. M. Sprehe and S. U. Geissen, ATV-DVWK Schriftenreihe, 18, 257-248 (2000).

8

8. National Institute of Environmental Research, South Korea, Risk of Pharmaceuticals in Environmentals, 1410 (2010).

9

9. S. Perez, P. Elchhorn, M. D. Cellz and D. S. Aga, Anal. Chem. 78, 1866-1874 (2006).

10

10. A. Putschew, U. Miehe, A. S. Tellez and M. Jekel, Water Sci. Technol., 56(11), 159-165 (2007).

11

11. A. Haib and K. Kummerer, Chemosphere, 62, 294-302(2006).

12

12. T. S. Hartmann, R. Lange and H. Schewinfurth, Ecotoxicol. Environ. Saf., 42, 274-281 (1999).

13

13. S. Perez and D. Barcelo, Anal. Bioanal. Chem., 387, 1235-1246 (2007).

14

14. A. Boersma, B. Robinson, M. Stehouwer, and M. Troupos, Wyoming Clean Water Plant Tertiary Treatment Project Feasibility Study, 8, Dec (2012).

15

15. W. Kalsch, Sci. Total Environ., 255, 143-153 (1999).

16

16. M. Schulz, D. Loffler M. Wagner and T. A. Ternes, Environ. Sci. Techol., 42, 7207-7217 (2008).

17

17. L. B. Angela, K., Sungpyo and S. A. Diana, Environ. Sci. Technol., 40, 7367-7373 (2006).

18

18. M. Gros, C. Cruz-Morato, E. Marco-Urrea, P. Longree, H. Singer, M. Sarra, J. Hollender, T. Vicent, S. Rodriguez-Mozaz and D. Barcelo, Water Res., 60, 228-241(2014).

19

19. National Institute of Environmental Research, South Korea, A Study and Monitoring of Residual Pharmaceuticals (II), (2009).

상단으로 이동

Analytical Science and Technology