Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

The characteristics of dye-sensitized solar cells using carbon nanotube in working and counter electrodes

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2014, v.27 no.6, pp.308-313
https://doi.org/10.5806/AST.2014.27.5.308




  • Downloaded
  • Viewed

Abstract

The effect of electrochemical characteristics of dye-sensitized solar cells (DSSC) upon employingmulti-wall carbon nanotube (MWCNT) on both working electrode and counter electrode were examined withusing EIS, J-V curves and UV-Vis absorption spectrometry. When 0.1 wt% of MWCNT was employed in theTiO2-MWCNT composit on working electrode, the energy conversion efficiency increased about 12.5%compared to the TiO2 only working electrode. The higher light conversion efficiency may attribut to the highelectrical conductivity of MWCNT in TiO2-MWCNT composite which improves the electron transport in theworking electrode. However, higher amount of MWCNT than 0.1 wt% in the TiO2-MWCNT compositedecreases the light conversion efficiency, which is mainly ascribed to the decreased transmittance of light byMWCNT and to the decreased adsorption of dye onto TiO2. The MWCNT employed counter electrode exhibitedmuch lower light conversion efficiency of DSSC than the Pt-counter electrode, while the MWCNT-Pt counterelectrode showed similar in light conversion efficiency to that of Pt-counter electrode.

keywords
dye-sensitized solar cell, carbon nanotube, working electrode, counter electrode, <TEX>$TiO_2$</TEX>-MWCNT composite


Reference

1

1. M. Gratzel, Nature, 414, 338-344 (2001).

2

2. B. O'Regan, and M. Gratzel, Nature, 353, 737-740 (1991).

3

3. M. Gratzel, Inorg. Chem., 44(20), 6841-6851 (2005).

4

4. M. Gratzel, J. Photochem. Photobio. A, 164, 3-14 (2004).

5

5. A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski and M. Gratzel, Nano Lett. 8, 977-981 (2008).

6

6. D. P. Hagberg, J. H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Gratzel and M. K. Nazeeruddin, J. Am. Chem. Soc., 130, 4259-6266 (2008).

7

7. E. Stathatos and P. Lianos, Adv. Mater., 19, 3338-3341(2007).

8

8. Q. Wang, Z. Zhang, S. M. Zakeeruddin and M. Gratzel, J. Phys. Chem. C, 112, 7084-7092 (2008).

9

9. Y. Kondo, H. Yoshikawa, K. Awaga, M. Murayama, T. Mori, K. Sunada, S. Bandow and S. Iljima, Langmuir, 24, 547-550 (2008).

10

10. M. Gratzel, Prog. Photovolt.: Res. and Appl, 8, 171-185(2000).

11

11. M.-S. Kang and Y. S. Kang, J. Korean Ind. Eng. Chem., 16(2), 159-168 (2005).

12

12. E. Flahaut, A. Peigney, Ch. Laurent, Ch. Marlieure, F. Chastel and A. Rousset, Acta Mater., 48, 3803-3812(2000).

13

13. D. Tasis, N. Tagmatarchis, A. Bianco and M. Prato, Chem. Rev., 106, 1105-1136 (2006).

14

14. Y. Xing, L. Li, C. C. Chusuei and R. V. Hull, Langmuir, 21, 4185-4190 (2005).

15

15. A. G. Osorio, I. C. L. Silveira, V. L. Bueno and C. P. Bergmann, Appl. Surf. Sci., 255, 2485-2489 (2008).

16

16. B. I. Rosario-Castro, E. J. Contes, M. Lebron-Colon, M. A. Meador, G. Sanchez-Pomales and C. R. Cabrera, Mater. Charact., 60, 1442-1453 (2009).

17

17. Y.-R. Shin, S.-M. Jung, I.-Y. Jeon and J.-B. Baek, Carbon, 52, 493-498, (2013).

18

18. D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu and R. E. Smalley, J. Am. Chem. Soc., 122(10), 2382-2383 (2000).

19

19. K.-M. Lee, C.-W. Hu, H.-W. Chen and K.-C. Ho, Solar Energy Mater. Solar Cell, 92, 1628-1633 (2008).

20

20. Y. Jo, J. Lim, H. Nam and Y. Jun, J. Korean Electrochem. Soc., 12, 301-310 (2009).

상단으로 이동

Analytical Science and Technology