- P-ISSN 1225-0163
- E-ISSN 2288-8985
불산 노출 평가를 위한 생체시료 중 불소 이온 분석을 위해서 초산완충용액을 사용한 이온선택전극(ISE: ion selective electrode) 분석법을 이용한 불소 이온 분석 방법을 제시하였다. MES-CyDTA 완충용액과 1회용 플라스틱 시험관을 사용함으로써 기존의 분석 방법에 비해 1/10의 시료를 사용하여 더짧은 시간에 정확하고 정밀한 소변 중 불소 이온 분석이 가능하였다. 1.8-7.8 mg/L의 기지 시료에 대해분석 방법의 정확도는 95-97.5%, 정밀도는 1.9-7.9%, 정량 한계는 0.1 mg/L였다. 이 방법을 불화수소 노출군 15명과 비노출군 12명의 소변 중 불소 이온 분석에 적용한 결과는 각각 0.98±0.38 mg/g creatinine,0.59±0.30 mg/g creatinine이었다.
A simple and sensitive analytical method for fluoride in urine by ion selective electrode (ISE) methodwas presented. Traditional buffer for fluoride determination using ISE is acetate-based one. Researchers havepointed out some drawbacks of the buffer for fluoride ISE analysis, and some other buffers including citrateammoniumbuffer and MES buffer have been studied for accurate determination of fluoride in urine here. Thesebuffers provided promising results in environmental field, and this author focused on overcoming the interferenceof co-existing aluminium. The results show that MES-CyDTA buffer gave the best recovery with accuracy of95-97.5% and precision of 1.9-7.9% for reference sample of 1.8-7.8 mg/L fluoride in urine, with smaller amountof samples and shorter analysis time compared with the traditional method which used acetate buffer. The methodwas applied to field samples, and which showed urinary of 0.98±0.38 mg/g creatinine for workers in electriccable manufacturing factory (n=15) and 0.59±0.30 mg/g creatinine for non-exposed workers (n=12).
1. J. S. Park, ‘Practical guide of health examination of workers’, Vol. 3, p 473, Occupational safety and research Institute, Incheon, 2013.
2. Y. J. Kim, S. H. Park and K. S. Choi, J. Korean Ophthalmol. Soc., 54(11), 1663-1668 (2013).
3. H. K. Pak, ‘Case report on accident of hydrofluoric acid leakage’, Korea occupational safety and health agency, Incheon, 2013.
4. Y.-Y. Kang, Y.-J. Kim, W.-I. Kim, C.-W. Yoon, J.-M. Yeon, S.-K. Shin and G.-J. Oh, Anal. Sci. Technol., 27(3), 167-171 (2014).
5. S. lehtinen, ‘Biological monitoring of chemical exposure in the workplace’, Vol. 2, Geneva, World Health Organization, 1996.
6. J. Eckstrand, C. J. Spak and M. Ehrnebo, Acta Pharmacol. Toxicol., 50, 321-325 (1982).
7. M. Rietjens, Anal. Chim. Acta, 368, 265-273 (1998).
8. M. Fouskaki, S. Sotiropoulou, M. Koci and N. A. Chaniotakis, Anal. Chim. Acta, 478(1), 77-84 (2003).
9. M. Trojanowicz, P. W. Alexander and D. B. Hibbert, Anal. Chim. Acta, 366(1-3), 23-33 (1998).
10. K. Itai and H. Tsunoda, Clin. Chim. Acta, 308(1), 163-171 (2001).
11. J.-S. Yang, ‘Biological monitoring of workers exposed to organic solvent mixture or inorganic chemical: Proficiency test for samples of biological monitoring’, Occupational safety and research Institute, Incheon, 1995.
12. American Conference of Governmental Industrial Hygienists (ACGIH), ‘Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices with 7th Edition Documentation’, Cincinnati, 2013.
13. Instruction for exposure and analysis (2010.3.11), Finland, http://www.ttl.fi/fi/asiantuntijapalvelut/tyoymparisto/kemikaalit_ja_polyt/biomonitorointi/naytteenotto/Documents/UF.pdf, 2010.
14. K. H. Schaller and J. Angerer, ‘Analysis of hazardous substances in biological materials: Methods for biological monitoring’, Vol. 2. New York: VCH Publishers (1988).