ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

논문 상세

    담배 잎-peroxidase와 다중벽 탄소 나노튜브를 이용한 dopamine의 정량

    Dopamine determination using a biosensor based on multiwall carbon nanotubes paste and burley tobacco-peroxidase

    분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2015, v.28 no.2, pp.98-105
    https://doi.org/10.5806/AST.2015.28.2.98
    권효식 (충북대학교)
    전병숙 (충북대학교 화학교육과)
    박용남 (한국교원대학교)
    • 다운로드 수
    • 조회수

    초록

    버얼리종 담배에서 추출물에서 얻은 peroxidase와 다중벽 탄소 나노튜브를 이용한 dopamine 정량바이오센서를 만들었다. Peroxidase는 dopamine을 dopamine quinone으로 산화시키는 반응의 촉매 역할을 한다. 이 논문은 효소의 농도, pH와 같은 바이오센서의 감응에 영향을 주는 parameter를 조사하였다. 또한, 전극의 감도, 직선성의 범위, 전극의 안정성을 조사하였다. 본 실험에 사용한 dopamine의 정량 센서는 pH 6.50, 0.010 M 인산 완충용액, -0.15 V의 가해준 전압에서 가장 좋은 감응을 나타내었다. 전극의 검출한계(S/N = 3)는 2.7×10−6 M이었으며, 5.0×10−2 M dopamine을 이용하여 10회 반복 측정한 상대표준편차는 1.3%이었다.

    keywords
    burley tobacco biosensor, dopamine, multiwall carbon nanotube

    Abstract

    The development of an enzymatic biosensor for dopamine determination based on multiwall carbon nanotubes (MWCNTs) and peroxidase obtained from the crude extract of burley tobacco (Nicotiana tabacum L.) was proposed. Peroxidase catalyzes the oxidation of dopamine to dopamine quinone. The influence on the response of analytical parameters of biosensors such as enzyme concentration, dopamine concentration, pH, and phosphate buffer solution concentration were investigated. The analytical parameters obtained, including sensitivity, linearity, and stability, were investigated. The proposed method for dopamine determination presented good selectivity even in the presence of uric acid and ascorbic acid. The sensor presented a higher response for dopamine in 0.010 M phosphate buffer at pH 6.50, with an applied potential of -0.15 V. The detection limit of the electrode was 2.7×10−6 M (S/N = 3) and the relative standard deviation of the measurements, which were repeated 10 times using 5.0×10−2 M dopamine, was 1.3%.

    keywords
    burley tobacco biosensor, dopamine, multiwall carbon nanotube


    참고문헌

    1

    1. W. Birkmayer and P. Riederer, Understanding the Neurotransmitters, Springer, New York, 1-79 (1989).

    2

    2. G. Stenstrm, B. Sjgren and J. Waldenstrm, Acta Med. Scand., 214, 145-152 (1983).

    3

    3. J. R. Cooper, F. E. Bloom and R. H. Roth, The Biochemical Basis of Neuropharmacology, Oxford University Press, New York, pp. 259-311 (1986).

    4

    4. J. S. Sidwell and G. A. Rechnitz, Biotechnol. Lett., 7, 419-425 (1985).

    5

    5. M. P. Connor, J. Sanchez, J. Wang, M. R. Smyth and S. Mannino, Analyst, 114, 1427-1429 (1989).

    6

    6. C. Petit, A. Gonzalez-Cortes and J. M. Kauffmann, Talanta, 42, 1783-1789 (1995).

    7

    7. J. S. Sidwell and G. A. Rechnitz, Biotechnol. Lett., 7, 419-422 (1985).

    8

    8. M. P. Connor, J. Wang, W. Kubiak and M. R. Smyth, Anal. Chim. Acta, 229, 139-143 (1990).

    9

    9. F. Mazzei, F.; F. Botre, M. Lanzi, G. Lorenti and F. Porcelli, Sens. Actuators B., 7, 427-430 (1992).

    10

    10. T. C. Tan and Y. Chen, Sens. Actuators B., 17, 101-107 (1994).

    11

    11. Y. Chen and T. C. Tan, Sens. Actuators B., 28, 39-48 (1995).

    12

    12. N. H. Horowitz, M. Fling and G. Horn, Methods in Enzymology, Academic press, New York, Vol. XVIIA, pp 615-620 (1970).

    13

    13. F. Ortega and E. Domnguez, J. Biotechnol., 31, 289-300 (1993).

    14

    14. Y. F. Tu, Z. Q. Fu and H. Y. Chen, Sens. Actuators B., 80, 101 (2001).

    15

    15. Y. U. Chen, T. C. Tan and T. C. Chemical Engineering Science, 7, 1027 (1996).

    16

    16. C. S. Caruso, I. C. Vieira and O. Fatibello-Filho, Anal. Lett., 32, 39-43 (1999).

    17

    17. M. Pravda, C. Petit, Y. Michotte, J. M. Kauffmann and K. Vytras, J. Chromatogr. A., 727, 47-52 (1996).

    18

    18. K. O. Lupetti, L. A. Ramos, I. C. Vieira and O. F. Filho, Il Farmaco, 60, 179-183 (2005).

    19

    19. Y. Zou, C. Xiang, S. Li-Xian and F. Xu, Biosensors and Bioelectronics, 23(7), 1010-1016 (2008).

    20

    20. S. Iijima, Nature, 354, 56-58 (1991).

    21

    21. Z. Herrasti, F. Martnez and E. Baldrich, Sens. Actuators B: Chemical, 203, 891-898 (2014).

    22

    22. P. Xiao, W. Wu, Y. Yu and F. Zhao, International J. of Electrochem. Sci., 2, 149-157 (2007).

    23

    23. H. Beitollahi, J. B. Raoof and R. Hosseinzadeh, Electroanalysis, 23, 1934-1940 (2011).

    24

    24. X. Liu, Y. Peng, X. Qu, S. Ai, R. Han and X. Zhu, J. of Electroanalyt. Chem., 654, 72-78 (2011).

    25

    25. Q. Zhao, L. Guan, G. Zhennan and Z. Qiankun, Electroanalysis, 17, 85-88 (2005).

    26

    26. K. Yamamoto, G. Shi, T. Zhou, F. Xu, J. Xu, T. Kato, J.-Y. Jin and L. Jin, Analyst, 128, 249-254 (2003).

    27

    27. F. A. de Souza Ribeiro, C. R. T. Tarleyb, K. B. B. and A. C. Pereiraa, Sens. Actuators B, 185, 743-754 (2013).

    28

    28. H. S. Han, H. K. Lee, J. M. You, H. Jeong and S. Jeon, Sens. Actuators B, 190, 886-895 (2014).

    29

    29. R. A. Kamin and G. A. Wilson, Anal. Chem., 52, 1198 (1980).

    30

    30. C. S. Caruso, I. C. Vieira and O. F. Filho, O. Anal. Lett., 32, 39 (1999).

    31

    31. J. Wang and M. S. Lin, Electroanalysis, 1, 43 (1989).

    32

    32. J. M. Frre and B. L. A. Renard, J. of Theoretical Biology, 101, 387-400 (1983).

    33

    33. G. F. Fuhrmann and B. Vlker, Biomembranes, 1145, 180-182 (1993).

    34

    34. M. D. P. T. Sotomayor, A. A. Tanaka and A. T. Kubota, J. Electroanal. Chem., 536, 71-81 (2002).

    35

    35. F. A. S. Ribeiroa, C. R. T. Tarleyb, K. B. Borgesa and A. C. Pereira, Sensors and Actuators B, 185, 743-754 (2013).

    상단으로 이동

    분석과학