- P-ISSN 1225-0163
- E-ISSN 2288-8985
본 연구는 상온에서 과망간산칼륨 (KMnO4)과 망간아세테이트 (Mn(CH3COO)2·4H2O) 수용액을반응시켜 초산구리 (Cu(CH3COO)2·H2O) 수용액을 공침한 다공성 CuO/MnO2 촉매에 대한 물리화학적특성에 대해 분석하였다. 합성방법은 KMnO4과 Mn(CH3COO)2·4H2O의 반응 몰비율을 0.3:1, 0.6:1, 1:1로반응시켜 초산구리 수용액을 망간아세테이트 투입량 대비 10~75 wt%로 공침시켜 구리이온을 담지시켰다. 제조된 촉매는 TGA/DTA, XRD, SEM 및 BET를 통해 촉매에 대한 물리화학적 특성을 분석하였고, 그 결과 반응 몰비율 변화에 따라 γ-MnO2, α-MnO2로 상변이가 이루어 졌으며, 반응 몰비율이0.6:1 일 때 비표면적이 253 m2/g을 갖는 다공성 CuO/γ-MnO2 촉매가 제조되었다.
In this study, the porous CuO/MnO2 catalyst was prepared through the co-precipitation process from an aqueous solution of potassium permanganate (KMnO4), manganese(II) acetate (Mn(CH3COO)2·4H2O) and copper(II) acetate (Cu(CH3COO)2·H2O). The phase change in MnO2 was analyzed according to the reaction molar ratio of KMnO4 to Mn(CH3COO)2. The reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O was varied at 0.3:1, 0.6:1, and 1:1. The aqueous solution of Cu(CH3COO)2 was injected into a mixed solution of KMnO4 and Mn(CH3COO)2 to 10~75 wt% relative to MnO2. The Cu ion co-precipitates as CuO with MnO2 in a highly dispersed state on MnO2. The physicochemical property of the prepared CuO/MnO2 was analyzed by using the TGA, DSC, XRD, SEM, and BET. The different phase types of MnO2 were prepared according to the reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O. The results confirmed that the porous CuO/MnO2 catalyst with γ-phase MnO2 was produced in the reaction mole ratio of KMnO4 to Mn(CH3COO)2 as 0.6:1 at room temperature.
1. K, Waak and C. F. Warner, ‘Air Pollution Its Origin and Control’, Harper and Row, 1981.
2. C. D. Cooper and F. C. Alley, ‘Air Pollution Control : A Design Approach’, Waveland Press, 1994.
3. E. S. Cho and Y.-S. Park, Odor Res. and Eng., 8(2), 78-84 (2009).
4. J. H. Lee and S. H. Kang, J. of Kor. Society of Water and Wastewater, 21(5), 621-629. (2007).
5. E. C. Jeon, J. H. Sa, S. T. Kim, J. H. Hong and K. H. Kim, J. of Kor. Society Atmospheric Environ., 22(3), 337-351. (2006).
6. B. J. Song, J.-E. Jeong, S.-Y. Jeong and J.-G. Won, J. Kor. Society of Waste Management, 21(2), 107-116. (2004).
7. E. C. Moretti and N. Mukhopadhyay, Chem. Eng. Prog., July, 20-26 (1993).
8. M. A. Palazzolo, ‘Control of industrial VOC emissions by catalytic incineration’, Research Triangle Park, NC, U. S. Environmental Protection Agency, 1985.
9. H. C. Han, ‘Study on the Treatment Characteristics of VOCs by Catalytic Combustion’ Ph. D. Dissertation, Myongji University, Korea, Yong-in, 1994.
10. G. Ramis, C. Yi, G. Busca, M. Turco, E. Kotur and R. J. Willy, Adsorption, J. Cat., 157(2), 523-535 (1995).
11. Z. Zhu, Z. Liu, S. Liu and H. Nia, App. Cat. B: Environ., 30(3-4), 267-276 (2001).
12. Y. Li and J. N. Armor, App. Cat. B: Environ., 13(2), 131-139 (1997).
13. J. Y. Lee, S. B. Kim and S. C. Hong, Chemosphere, 50(8), 1115-1122 (2003).
14. S. S. Kim and S. C. Hong, T, J. Kor. Ind. Eng. Chem., 18, 255 (2007).
15. T. Yamashita and A. Vannice, App. Cat. B: Environ., 13(2), 141-155 (1997).
16. S. C. Hong, Kor. Chem. Eng. Res., 43(2), 278-285 (2005).