- P-ISSN 1225-0163
- E-ISSN 2288-8985
본 연구에서는 가시광촉매의 특성을 나타낼 수 있는 촉매를 제조하여 촉매를 특성화 하였으며,toluene, xylene, MEK (methyl ethyl ketone), ammonia를 반응물로 하여 기존의 UV-광촉매와 분해능을 비교 실험하였다. UV-광촉매는 파장범위가 280~360 nm 근처에서 광촉매가 활성화된다. 그러나 가시광촉매는 가시광영역인 400~750 nm의 파장영역에서도 광촉매가 활성화 된다. 이것을 UV-Vis 흡수도로 파악하였다. 그리고 가시광촉매의 성능을 향상시키기 위하여 여러 가지 재료로 도핑하는데, 여기서는 망간에Pt를 부가하여 성능향상을 꾀하였다. Pt를 첨가한 가시광 촉매의 경우 성능이 향상되었음을 알 수 있었다. 그리고 바인더로 MTMS (methyl tri methoxy silane)를 사용하였으며 바인더양에 따른 접촉각을 측정하였다. MTMS 함량이 증가할수록 접촉각이 커졌다. 따라서 친수성이 줄어든 것으로 나타났다. 그리고Mn-TiO_2 촉매의 항균성이 매우 우수한 것으로 나타났다.
The catalyst works for visible-light region was characterized. Toluene, xylene, MEK and ammonia were used as reactants. The decomposition efficiency was compared between visible-light photocatalyst and UV-light one. UV-photocatalyst can be activated with UV-light wave length of 280~360 nm. However, visiblelight photocatalyst can be activated with visible wave length of 400~750 nm. This result was found by using UV-Vis absorbance. A lot of materials were doped to visible light photocatalyst in order to increase its performance. Platinum was added to visible light photocatalyst with manganese in order to increase performance of the visible light photocatalyst. MTMS (Methyl tri methoxy silane) was used as a binder. Contact angle was analyzed varying with amount of binder. Contact angle was increased with increasing the amount of MTMS. As a result, the hydrophilic property of photocatalyst with MTMS binder was decreased due to its hydrophobic one. And Mn-TiO_2 catalyst had an excellent anti-bacterial property.
1. Michael R. Hoffman, Scot T. Martin, Wonyoung Choi and Detef W. Bahnemann, Chem. Rev., 95, 69-96 (1995).
2. S. A. Bilmes, P. Mandelbaum, F. Alvarez and N. M. Victoria, J. Phys. Chem. B, 104(42), 9821-9858 (2000).
3. Yoshihisa Ohko, Isao Ando, Chisa Niwa, Tetsu Tatsuma, Tsuyosh Yamamura, Tetuto Nakashima, Yoshinobu Kubota and Akira Fujishima, Environ. Sci. Technol., 35(11), 2365-2368 (2001).
4. Xingtao Gao and Istael E. Wachs, Catalysis Today, 51(2), 233-254 (1999).
5. Q. F. Zhou, Q. Q. Zhang, J. X. Zhang, L. Y. Zhang and X. Yao, Materials Letters, 31, 39-42 (1997).
6. E. Obuhi, T. Sakamoto, K. Nakano and F. Shiraishi, CHEM ENG SCI., 54, 1525-1530 (1999).
7. A. Fujishima and K. Honda, Nature, 37, 238 (1992).
8. Tsuoshi Takata, Akira Tanaka, Michikazu Hara, Junko N. Kondo and Kazumari Domen, Catalysis Today, 44, 17-26 (1998).
9. G. A. Somorjai, “Chemistry in two demensions surface”, Cornell Univ. Press, 551, 1981.
10. M. A. Fox and M. T. Dulay, Chem. Rev., 93, 341-357 (1993).
11. S. Nishimoto, S. B. Ohtani and H. Kajiwara, J. Chem. Soc. Fraday Trans, 81(10), 2467-2474 (1985).
12. M. C. Kim, “Visible ray catalyst coating solution and its making method”, Korea Patent 10-0614416, Korea Patent Association, 2006.
13. C. Su, B. Y. Hong and C. M. Tseng, Catalysis Today 96, 119-126 (2004).
14. C. H. Ao, S. C. Lee, J. Z. Yu and J. H. Xu, Applied Catal. B: Environmental, 54, 41-50 (2004).
15. Mehrdad Keshmiri, Madjid Mohseni, Tom Troczynski, Applied Catal: Environmental, 53, 209-219 (2004).
16. M. A. Centeno, M. Paulis, M. Montes and J. A. Odriozola, Applied Catal. A: Gen., 234, 1-2 (2002).
17. D. Tenibile, A. Trovarelli, C. D. Leitenburg and G. Ddcetti, Catal. Today, 47, 1-4 (1999).
18. M. C. Kim, J. of Korea Intellectual Patent Society, 9, 21 (2007).