ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

우리나라 하천에 서식하는 붕어와 주변 퇴적토에 축적된 HBCDs의 분포 특성

Distribution characteristics of hexabromocyclododecanes in crucian carp and sediment from the major rivers

분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2014, v.27 no.6, pp.321-332
https://doi.org/10.5806/AST.2014.27.5.321
이수민 (부산대학교)
정기호 (부산대학교)
김성욱 (부산대학교)
  • 다운로드 수
  • 조회수

초록

본 연구에서는 우리나라 주요 하천에 서식하는 붕어와 주변 퇴적토에 축적된 HBCDs(hexabromocyclododecanes)의 농도를 분석하고 분포특성을 조사하였다. 조사한 15개 지점에서 구한 모든붕어 근육 및 퇴적토 시료에서 HBCDs가 검출되었는데 이는 HBCDs가 광범위하게 오염되어 있음을 나타내는 것이다. 붕어 근육과 퇴적토에 축적된 HBCDs의 총 농도(ΣHBCDs, α-, β- 및 γ-HBCD 농도를 모두 합한 값)는 각각 1.3~19 ng/g (lipid wt)과 0.17~30 ng/g (dry wt) 범위로 나타났다. 지금까지 일반적으로 알려진 다른 연구에서와 마찬가지로 붕어에서는 α-이성질체가 그리고 퇴적토에서는 γ-이성질체가 각각 88%와 60%로 가장 우세하게 축적된 것으로 나타났다. 각 하천의 하류에서 채집한 붕어 근육에 축적된 ΣHBCDs가 상류에서의 시료보다 훨씬 높은 수준으로 검출되었다. 또한 하천 하류에 위치하지만 고립된 지점에서의 붕어 근육에 축적된 ΣHBCDs는 하천의 다른 지점에서 채집한 붕어 근육에 축적된 값보다 크게 낮은 값으로 나타났다. 이는 하천의 주변 환경이 HBCDs 오염에 기여하고 있는 것을 나타내는것으로 보인다.

keywords
HBCD, hexabromocyclododecane, crucian carp, sediment, brominated flame retardant

Abstract

The accumulation levels of hexabromocyclododecanes (HBCDs) were measured in samples of muscletissue from crucian carp (Carassius auratus) and also in samples of associated sediments. Samples were collectedfrom 15 sites along the courses of four major rivers. Widespread contamination by HBCDs in this area wasidentified from the results of this investigation. HBCDs were found above the detection limit from all of thesampling sites. The ΣHBCDs (sum of α-, β-, and γ-HBCDs) levels ranged from 1.3 to 19 ng/g (lipid wt) inthe crucian carp musscle tissue samples, and from 0.17 to 30 ng/g (dry wt) in the associated sediment samples. The predominance of α-diastereomer in the muscle tissue of the carp and γ-diastereomer in the sediments wasidentified, accounting for 88% and 60% of the ΣHBCDs, respectively. The ΣHBCDs levels in the muscle tissuesamples of carp collected from the upstream sections of each river were much lower than those in the samplesfrom carp in the downstream sections. In addition, the ΣHBCDs levels in carp tissue samples from an isolatedsite were much lower than those in carp collected from the sites along the major rivers. This suggests thatHBCD contamination in the rivers is likely to be sourced from the environment adjacent to them.

keywords
HBCD, hexabromocyclododecane, crucian carp, sediment, brominated flame retardant


참고문헌

1

1. “Study on the international regulation trends and counterplans for the brominated flame retardants”, MOE, Korea, 2005 (in Korean).

2

2. “The amount of domestic distribution of chemicals: the 4th survey”, MOE, Korea, 2012 (in Korean).

3

3. “Draft risk profile: hexabromocyclododecane”, UNEP/POPS/POPRC.6/10, (2010).

4

4. EFSA(European Food Safety Authority), “Scientific Opinion on Hexabromocyclododecanes (HBCDDs) in Food”, EFSA Journal, 9(7), 2296-2299 (2011).

5

5. A. Covaci, A. C. Gerecke, R. J. Law, S. Voorspoels, M. Kohler, N. V. Heeb, H. Leslie, C. R. Allchin and J. DeBoer, J. Environ. Sci. Technol., 40, 3679-3688 (2006).

6

6. K. Smith, C. H. Liu, G. A. El-Hiti, G. S. Kang, E. Jones, S. G. Clement, A. D. Checquer, O. W. Howarth, M. B. Hursthouse and S. J. Coles, Org. Biomol. Chem., 3, 1880-1892 (2005).

7

7. N. V. Heeb, W. B. Schweizer, M. Kohler and A. C. Gereke, Chemosphere, 61, 65-73 (2005).

8

8. Andersson, G. Blomkvist, Chemosphere, 10, 1051-1060 (1981)

9

B. Jansson, L. Asplund and M. Olsson, Chemosphere 16, 2343-2349 (1987).

10

9. U. Sellstrm, A. Kierkegaard, C. DeWit and B. Jansson, Environ. Toxicol. Chem., 17, 1065-1072 (1998).

11

10. H. Xiaozhong, H. Decong, S. Qi, L. Jing and W. Peng, Chemosphere, 82, 698-707 (2011).

12

11. Proposal from POPRC-8 (http://chm.pops.int/Convention/POPsReviewCommittee/LatestMeeting/POPRC8/POPRC8Followup/HBCDRecommendation/tabid/2912/Default.aspx); http://treaties.un.org/doc/Publication/CN/2013/CN.934.2013-Eng.pdf).

13

12. J. de Boer, C. Allchin, B. Zergers, J. P. Boon, S. A. Brandsma, S. Morris, A. W. Kruijt, I. van der Veen, J. M. Hesselingen and J. J. H. Haftka, “HBCD and TBBPA in sewage sludge, sediments and biota, including interlaboratory study”, Ymuiden, the Netherlands: Netherlands Institute for Fisheries Research (RIVO) BV;[Report number C033/02], 2002.

14

13. J. Y. Moon, Y. B. Kim, S. I. Lee, H. Song, K. Choi and G. H. Jeong, Chemosphere, 62, 430-439 (2006).

15

14. B. A. Schumacher, U.S EPA, NCEA-C-1282, EMASC-001, 2002.

16

15. Q. Xian, K. Ramu, T. Isobe, A. Sudaryanto, X. Liu, Z. Gao, S. Takahashi, H. Yu and S. Tanabe, Chemosphere, 71, 268-276 (2008).

17

16. L. Roosens, A. C. Dirtu, G. Goemans, C. Belpaire, A. Gheorghe, H. Neels, R. Blust and A. Covaci, Environ. Int. 34, 976-983 (2008).

18

17. G. Poma, P. Volta, C. Roscioli, R. Bettineth and L. Guzzella, Sci. Total Environ., 481, 401-408 (2014).

19

18. G. H. Jeong, N. R. Hwang, E. Hwang, B. Lee and J. Yoon, Sci. Total Environ., 470-471, 1471-1478 (2014).

20

19. C. R. Allchin and S. Morris, Organohalogen Compd., 61, 41-44 (2003).

21

20. A. C. Gerecke, W. Giger, P. C. Hartmann, N. V. Heeb, H. P. E. Kohler, P. Schmid, M. Zennegg and M. Kohler, Chemosphere, 64, 311-317 (2006).

22

21. C. H. Marvin, G. T. Tomy, M. Alaee and G. MacInnis, Chemosphere, 64, 268-275 (2006).

23

22. S. Morris, C. R. Allchin, B. N. Zegers, J. J. H. Haftka, J. P. Boon, C. Belpaire, P. G. Leonards, S. P. J. van Leeuwen and J. de Boer, Environ. Sci. Technol., 38, 5497-5504 (2004).

24

23. N. Zhu, J. Fu, Y. Gao, P. Ssebugere, Y. Wang and G. Jiang, Environ. Pollution, 181, 7-13 (2013).

25

24. R. W. Hunziker, S. Gonsior, J. A. McGregor, D. Desjardins, J. Ariano and U. Friederich, Organohalogen Compd., 66, 2300-2305 (2004).

26

25. K. Law, V. P. Palace, T. Halldorson, R. Danell, K. Wautier, B. Evans, M. Alaee, C. Marvin and G. T. Tomy, Environ. Toxicol. Chem. 25, 1757-61 (2006).

27

26. D. T. Szabo, J. I. Diliberto, H. Hakk, J. K. Huwe and L. S. Birnbaum, Toxicol Sci., 121(2), 234-244 (2011).

28

27. D. T. Szabo, J. I. Diliberto, H. Hakk, J. K. Huwe and L. S. Birnbaum, Toxicol Sci., 117(2), 282-293 (2010).

29

28. M. Du, L. Lin, C. Yan and X. Zhang, Environ. Sci. Technol., 46, 11040-11046 (2012).

30

29. B. Zegers, A. Mets, R. van Bommel, C. Minkenberg, T. Hamers, J. Kamstra, G. Pierce and J. Boon, Environ. Sci. Techlol., 39, 2095-2100 (2005).

31

30. K. Ramu, T. Isobe, S. Takahashi, E. Y. Kim, B. Y. Min, S. U. We and S. Tanabe, Chemosphere, 79, 713-719(2010).

32

31. S. L. Klosterhaus, H. M. Stapleton, M. J. La Guardia and D. J. Greig,. Environ. Int., 47, 56-65 (2012).

33

32. N. H. Minh, T. Isobe, D. Ueno, K. Matsumoto, M. Mine, N. Kajiwara, S. Takahashi and S. Tanabe, Japan Environ. Pollut., 148, 409-417 (2007).

34

33. X. Zhang, D. Zhang, Z. Luo, L. Lin and C. Yan, Environ. Chem., 8, 561-568 (2011).

35

34. K. Janak, A. Covaci, S. Voorspoels and G. Becher, Environ. Sci. Technol., 39(7), 1987-1994 (2005).

36

35. M. Peled, R. Scharia, D. Sondock, “Thermal rearrangement of hexabromocyclododecane (HBCD)”, In: “Advances in Organobromine Chemistry II” (J. R. Desmurs, B. Gerard and M. J. Goldstein, Eds.), pp. 92-99. Elsevier Science, Amsterdam, The Netherlands, 1995).

37

36. ECHA(European Chemicals Agency), SVHC SUPPORT DOCUMENT: “Substance name: Hexabromocyclododecane and all major diastereoisomers identified”, 2008. (EC number: 247-148-4 and 221-695-9, CAS number: 25637-99-4 and 3194-55-6).

상단으로 이동

분석과학