Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Determination of ibuprofen and its metabolites in human urine by GC-MS

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2010, v.23 no.2, pp.179-186
https://doi.org/10.5806/AST.2010.23.2.179



  • Downloaded
  • Viewed

Abstract

The oxidative metabolism of ibuprofen in healthy male urine collected at 3, 6, 9, 12 and 15 h after oral administration of ibuprofen was studied by GC/MS assay. To detect conjugated metabolites of ibuprofen,urine sample was acid-hydrolyzed with 6 M HCl at 100 oC for 30 min. To effectively extract ibuprofen and its metabolites, liquid-liquid extraction (LLE) was conducted at pH 3, 5, and 7, respectively. As a result, LLE at pH 3 was shown to be the best extraction condition. For the determination of trace amounts of ibuprofen and its metabolites in extract, trimethylsilylation (TMS) with BSTFA was applied and followed by GC/MS analysis. In this study, main 5 metabolites including parent drug were detected and these metabolites were assigned as three hydroxylated forms and one carboxylated form. Each metabolite was tentatively identified by both interpretation of mass spectrum and comparison with previously reported results. In addition, time profile of urinary excretion rate for parent drugs and metabolites was studied. Finally, the metabolic pathways of ibuprofen were suggested on the basis of the structural elucidation of its metabolites and excretion profiles.

keywords
ibuprofen, urine, metabolites, TMS, GC/MS, mass spectrum


Reference

1

1. L. L. Brunton, J. S. Lazo, K. L. Parker, Goodman & Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, 2006.

2

2. S. Bancos, M. P. Bernard, D. J. Topham and R. P. Phipps, Cell Immun., 258, 18-28(2009).

3

3. B. Babiloni, G. B. Frisoni, C. D. Percio, O. Zanetti, C. Bonomini, E. Cassetta, P. Pasqualetti, C. Miniussi, M. De Rosas, A. Valenzano, G. Cibelli, F. Eusebi and P. M. Rossini, Clin. Neurophys., 120, 709-718(2009).

4

4. 의약화학 편집위원회, “의약화학”, 2th Ed., p. 85-106,신일상사, 서울, 2004.

5

5. R. F. N. Mills, S. S. Adams, E. E. Cliff, W. Dickson and J. S. Nicholson, Xenobiotica, 3, 589-598(1973).

6

6. B. Chai, P. E. Minkler and C. L. Hoppel, J. Chromatogr. A, 430, 93-101(1988).

7

7. A. R. M. de Oliveira, F. J. M. de Santana and P. S. Bonato, Anal. Chim. Acta, 538, 25-34(2005).

8

8. A. R. M. de Oliveira, E. J. Cesarino and P. S. Bonato, J. Chromatogr. B, 818, 285-291(2005).

9

9. X. W. Teng, S. W. J. Wang and N. M. Davies, J. Chromatogr. B, 796, 225-231(2003).

10

10. B. Vermeulen and J. P. Remon, J. Vet. Pharm. Therap., 24, 105-109(2001).

11

11. J. Jung, H. Hur, W. W. Lee and J. Hong, Anal. Sci. Tech., 21(6), 510-517(2008).

12

12. S. C. Tan, S. H. D. Jackson, C. G. Swift and A. J. Hutt, J. Chromatogr. B, 701, 53-63(1997).

13

13. R. Lopez-Rodriguez, J. Novalbos, S. Gallego-Sandin, M. Roman-Martinez, J. Torrado, J. P. Gisbert and F. Abad-Santos, Pharm. Res., 58, 77-84(2008).

14

14. M. A. Hamman and G. A. Thompson, and S. D. Hall, Biochem. Pharm, 54, 33-41(1997).

상단으로 이동

Analytical Science and Technology