- P-ISSN 1225-0163
- E-ISSN 2288-8985
염료감응형 태양전지의 광전극 및 상대전극에 탄소나노튜브를 도입하여 전지의 광전기적 특성 변화를 EIS, J-V 특성곡선 및 UV-Vis 분광기를 이용하여 분석하였다. TiO2 광전극의 전기전도도 및 광전효율을 향상시키기 위해 전자전달 촉진자 역할을 하는 multi-wall carbon nanotube (MWCNT)를 TiO2와 혼합하여 TiO2-MWCNT 복합체를 sol-gel 연소 복합공정을 통해 제조하여 조사한 결과 0.1 wt% MWCNT를 첨가한 경우, TiO2만을 사용한 경우에 비해 약 12.5%의 향상된 효율을 보였다. TiO2-MWCNT 복합체에서 MWCNT가 TiO2 층의 전자이동을 향상시켜 저항을 감소하고 염료와 전자의 재결합을 감소시킨 결과로 생각된다. 그러나 0.1 wt%보다 많은 MWCNT를 첨가할 경우 광투과도 및 염료의 흡착량을 감소시켜 효율이 감소하였다. 또한 상대전극에 MWCNT와 MWCNT-Pt를 적용하였을 경우 각각의 효율은 1.2%와 4.1%로 MWCNT만 적용할 때 보다 백금이 담지된 MWCNT를 사용하였을 경우에 백금과 비슷한 효율을 보였다.
The effect of electrochemical characteristics of dye-sensitized solar cells (DSSC) upon employingmulti-wall carbon nanotube (MWCNT) on both working electrode and counter electrode were examined withusing EIS, J-V curves and UV-Vis absorption spectrometry. When 0.1 wt% of MWCNT was employed in theTiO2-MWCNT composit on working electrode, the energy conversion efficiency increased about 12.5%compared to the TiO2 only working electrode. The higher light conversion efficiency may attribut to the highelectrical conductivity of MWCNT in TiO2-MWCNT composite which improves the electron transport in theworking electrode. However, higher amount of MWCNT than 0.1 wt% in the TiO2-MWCNT compositedecreases the light conversion efficiency, which is mainly ascribed to the decreased transmittance of light byMWCNT and to the decreased adsorption of dye onto TiO2. The MWCNT employed counter electrode exhibitedmuch lower light conversion efficiency of DSSC than the Pt-counter electrode, while the MWCNT-Pt counterelectrode showed similar in light conversion efficiency to that of Pt-counter electrode.
1. M. Gratzel, Nature, 414, 338-344 (2001).
2. B. O'Regan, and M. Gratzel, Nature, 353, 737-740 (1991).
3. M. Gratzel, Inorg. Chem., 44(20), 6841-6851 (2005).
4. M. Gratzel, J. Photochem. Photobio. A, 164, 3-14 (2004).
5. A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski and M. Gratzel, Nano Lett. 8, 977-981 (2008).
6. D. P. Hagberg, J. H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Gratzel and M. K. Nazeeruddin, J. Am. Chem. Soc., 130, 4259-6266 (2008).
7. E. Stathatos and P. Lianos, Adv. Mater., 19, 3338-3341(2007).
8. Q. Wang, Z. Zhang, S. M. Zakeeruddin and M. Gratzel, J. Phys. Chem. C, 112, 7084-7092 (2008).
9. Y. Kondo, H. Yoshikawa, K. Awaga, M. Murayama, T. Mori, K. Sunada, S. Bandow and S. Iljima, Langmuir, 24, 547-550 (2008).
10. M. Gratzel, Prog. Photovolt.: Res. and Appl, 8, 171-185(2000).
11. M.-S. Kang and Y. S. Kang, J. Korean Ind. Eng. Chem., 16(2), 159-168 (2005).
12. E. Flahaut, A. Peigney, Ch. Laurent, Ch. Marlieure, F. Chastel and A. Rousset, Acta Mater., 48, 3803-3812(2000).
13. D. Tasis, N. Tagmatarchis, A. Bianco and M. Prato, Chem. Rev., 106, 1105-1136 (2006).
14. Y. Xing, L. Li, C. C. Chusuei and R. V. Hull, Langmuir, 21, 4185-4190 (2005).
15. A. G. Osorio, I. C. L. Silveira, V. L. Bueno and C. P. Bergmann, Appl. Surf. Sci., 255, 2485-2489 (2008).
16. B. I. Rosario-Castro, E. J. Contes, M. Lebron-Colon, M. A. Meador, G. Sanchez-Pomales and C. R. Cabrera, Mater. Charact., 60, 1442-1453 (2009).
17. Y.-R. Shin, S.-M. Jung, I.-Y. Jeon and J.-B. Baek, Carbon, 52, 493-498, (2013).
18. D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu and R. E. Smalley, J. Am. Chem. Soc., 122(10), 2382-2383 (2000).
19. K.-M. Lee, C.-W. Hu, H.-W. Chen and K.-C. Ho, Solar Energy Mater. Solar Cell, 92, 1628-1633 (2008).
20. Y. Jo, J. Lim, H. Nam and Y. Jun, J. Korean Electrochem. Soc., 12, 301-310 (2009).