바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI
GOO, YOON HOE(DEPARTMENT OF MATHEMATICS, HANSEO UNIVERSITY) pp.105-117 https://doi.org/10.7468/jksmeb.2016.23.2.105
초록보기
초록

Abstract

This paper shows that the solutions to the nonlinear perturbed differential system <TEX>$y{\prime}=f(t,y)+\int_{t_0}^{t}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$</TEX>, have the bounded property by imposing conditions on the perturbed part <TEX>$\int_{t_0}^{t}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$</TEX>, and on the fundamental matrix of the unperturbed system y&#x2032; = f(t, y) using the notion of h-stability.

KIM, YOUNG SUN(DEPARTMENT OF APPLIED MATHEMATICS, PAI CHAI UNIVERSITY) ; KIM, YONG CHAN(DEPARTMENT OF MATHEMATICS, GANGNEUNG-WONJU NATIONAL) pp.119-130 https://doi.org/10.7468/jksmeb.2016.23.2.119
초록보기
초록

Abstract

In this paper, we introduce the notions of soft L-fuzzy preproximities in complete residuated lattices. We prove the existence of initial soft L-fuzzy preproximities. From this fact, we define subspaces and product spaces for soft L-fuzzy preproximity spaces. Moreover, we give their examples.

DESHPANDE, BHAVANA(DEPARTMENT OF MATHEMATICS, GOVT. ARTS & SCIENCE P. G. COLLEGE, RATLAM (M.P.)) ; SHEIKH, SAJAD AHMAD(DEPARTMENT OF MATHEMATICS GOVT. P. G. ARTS AND SCIENCE COLLEGE RATLAM (M.P.)) pp.131-143 https://doi.org/10.7468/jksmeb.2016.23.2.131
초록보기
초록

Abstract

In this paper, we present some common fixed point theorems for two pairs of weakly compatible self-mappings on multiplicative metric spaces satisfying a generalized Meir-Keeler type contractive condition. The results obtained in this paper extend, improve and generalize some well known comparable results in literature.

YUN, SUNGSIK(DEPARTMENT OF FINANCIAL MATHEMATICS, HANSHIN UNIVERSITY) ; LEE, JUNG RYE(DEPARTMENT OF MATHEMATICS, DAEJIN UNIVERSITY) ; SEO, JEONG PIL(OHSANG HIGH SCHOOL) pp.145-153 https://doi.org/10.7468/jksmeb.2016.23.2.145
초록보기
초록

Abstract

In this paper, we solve the quadratic &#x3C1;-functional inequalities (0.1) <TEX>${\parallel}f(x+y)+f(x-y)-2f(x)-2f(y){\parallel}$</TEX> <TEX>$\leq$</TEX> <TEX>${\parallel}{\rho}(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)){\parallel}$</TEX>, where <TEX>$\rho$</TEX> is a fixed complex number with <TEX>$\left|{\rho}\right|$</TEX> < 1, and (0.2) <TEX>${\parallel}4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y){\parallel}$</TEX> <TEX>$\leq$</TEX> <TEX>${\parallel}{\rho}(f(x+y)+f(x-y)-2f(x)-2f(y)){\parallel}$</TEX>, where &#x3C1; is a fixed complex number with |&#x3C1;| &#x3C; <TEX>$\frac{1}{2}$</TEX>. Furthermore, we prove the Hyers-Ulam stability of the quadratic &#x3C1;-functional inequalities (0.1) and (0.2) in complex Banach spaces.

LEE, SUNG JIN(DEPARTMENT OF MATHEMATICS, DAEJIN UNIVERSITY) ; LEE, JUNG RYE(DEPARTMENT OF MATHEMATICS, DAEJIN UNIVERSITY) ; SEO, JEONG PIL(OHSANG HIGH SCHOOL) pp.155-162 https://doi.org/10.7468/jksmeb.2016.23.2.155
초록보기
초록

Abstract

In this paper, we solve the additive &#x3C1;-functional inequalities (0.1)<TEX>${\parallel}f(x+y)+f(x-y)-2f(x){\parallel}$</TEX> <TEX>$\leq$</TEX> <TEX>${\parallel}{\rho}(2f(\frac{x+y}{2})+f(x-y)-2f(x)){\parallel}$</TEX>, where &#x3C1; is a fixed complex number with |&#x3C1;| &#x3C; 1, and (0.2) <TEX>${\parallel}2f(\frac{x+y}{2})+f(x-y)-2f(x)){\parallel}$</TEX> <TEX>$\leq$</TEX> <TEX>${\parallel}{\rho}f(x+y)+f(x-y)-2f(x){\parallel}$</TEX>, where &#x3C1; is a fixed complex number with |&#x3C1;| &#x3C; 1. Furthermore, we prove the Hyers-Ulam stability of the additive &#x3C1;-functional inequalities (0.1) and (0.2) in complex Banach spaces.

LEE, SUNG JIN(DEPARTMENT OF MATHEMATICS, DAEJIN UNIVERSITY) ; SEO, JEONG PIL(OHSANG HIGH SCHOOL) pp.163-179 https://doi.org/10.7468/jksmeb.2016.23.2.163
초록보기
초록

Abstract

Let <TEX>$M_1f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$</TEX>, <TEX>$M_2f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$</TEX> Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic &#x3C1;-functional inequalities (0.1) <TEX>$N(M_1f(x,y)-{\rho}M_2f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$</TEX> and (0.2) <TEX>$N(M_2f(x,y)-{\rho}M_1f(x,y),t){\geq}\frac{t}{t+{\varphi}(x,y)}$</TEX> in fuzzy Banach spaces, where &#x3C1; is a fixed real number with &#x3C1; &#x2260; 1.

KIM, YOUNG JIN(DANG JIN MIDDLE SCHOOL) pp.181-199 https://doi.org/10.7468/jksmeb.2016.23.2.181
초록보기
초록

Abstract

In this paper we obtain some retarded integral inequalities involving Stieltjes derivatives and we use our results in the study of various qualitative properties of a certain retarded impulsive differential equation.

DESHPANDE, BHAVANA(DEPARTMENT OF MATHEMATICS, GOVT. ARTS & SCIENCE P. G. COLLEGE, RATLAM (M.P.)) ; HANDA, AMRISH(DEPARTMENT OF MATHEMATICS, GOVT. P. G. ARTS AND SCIENCE COLLEGE, RATLAM (M.P.)) ; KOTHARI, CHETNA(DEPARTMENT OF MATHEMATICS, GOVT. P. G. COLLEGE JAORA (M.P.)) pp.201-201 https://doi.org/10.7468/jksmeb.2016.23.2.201
초록보기
초록

Abstract

After publication of the original article [1], the authors noticed the title was incorrect as follows: ‘Huge contraction on partially ordered metric spaces.’ The correct version of the title is below: Contraction on partially ordered metric spaces

DESHPANDE, BHAVANA(ADEPARTMENT OF MATHEMATICS, GOVT. ARTS & SCIENCE P. G. COLLEGE, RATLAM (M.P.)) ; HANDA, AMRISH(BDEPARTMENT OF MATHEMATICS, GOVT. P. G. ARTS AND SCIENCE COLLEGE, RATLAM (M.P.)) pp.203-203 https://doi.org/10.7468/jksmeb.2016.23.2.203
초록보기
초록

Abstract

After publication of the original article [1], the authors noticed the title was incorrect as follows: ‘Huge coupled coincidence point theorem for generalized compatible pair of mappings with applications.’ The correct version of the title is below: Coupled coincidence point theorem for generalized compatible pair of mappings with application

한국수학교육학회지시리즈B:순수및응용수학