바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Development of Spatial Representations of Time

Abstract

Time and space are intimately related in real life, as can be seen from the nearly universal use of spatial concepts in time words across cultures. However, whether the form of spatiotemporal representations relies on the linear or on the logarithmic scale is still under debate. In addition, there is a lack of research investigating the development of spatiotemporal representations. Here, we examined the form of spatiotemporal representations across 6-8-year-olds, 9-11-year-olds, and adults using a novel timeline estimation paradigm. We asked participants to view a three-minute-long video clip and mark the temporal distance of a specific scene of the video on a horizontal timeline. We found non-linearity between their estimates and stimulus temporal distances, which decreased as the participants’ ages increased. Six-to-eight-year-old children showed the greatest non-linearity compared to other age groups, and there was no significant difference in the magnitude of non-linearity in estimation between 9-11-year-olds and adults. These results imply that humans might have a logarithmically compressed spatial representation of time across age groups.

keywords
Submission Date
2018-07-14
Revised Date
2018-08-29
Accepted Date
2018-08-31

Reference

1.

김신혜, 진영선 (2014). 계열적 수행의 연령차와 인출 단서의 효과. 한국심리학회지: 발달, 27(1), 141-158.

2.

송윤지, 김소연 (2018). 시간 정보 처리 기능이아동의 문법 발달에 미치는 영향-초등학교 2학년과 3학년을 대상으로. 한국심리학회지: 발달, 31(2), 145-167.

3.

윤주인, 박영신 (2014). 과거와 미래사건의 순서에 대한 추론의 발달과 집행기능. 한국심리학회지: 발달, 27(4), 51-74.

4.

Allan, L. G., & Gibbon, J. (1991). Human bisection at the geometric mean. Learning and Motivation, 22, 39-58.

5.

Anobile, G., Cicchini, G. M., & Burr, D. C. (2012). Linear mapping of numbers onto space requires attention. Cognition, 122(3), 454-459.

6.

Arzy, S., Adi-Japha, E., & Blanke, O. (2009). The mental time line: an analogue of the mental number line in the mapping of life events. Consciousness and Cognition, 18(3), 781-785.

7.

Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14(1), 125-135.

8.

Bender, A., & Beller, S. (2014). Mapping spatial frames of reference onto time: A review of theoretical accounts and empirical findings. Cognition, 132(3), 342-382.

9.

Block, R., Zakay, D., & Hancock, P. (1999). Developmental changes in human duration judgments: A meta-analytic review. Developmental Review, 19(1), 183-211.

10.

Booth, J., & Siegler, R. (2006). Developmental and individual differences in pure numerical estimation. Developmental psychology. 42(1). 189-201.

11.

Boroditsky, l. (2000). Metaphoric structuring:Understanding time through spatial metaphors. Cognition, 75, 1-28.

12.

Bottini, R., & Casasanto, D. (2013). Space and time in the child’s mind: metaphoric or ATOMic? Frontiers in Psychology, 4, 803.

13.

Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1831-1840.

14.

Buhusi C. V., Meck W. H. (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nature Review Neuroscience, 6, 755-765.

15.

Cai, Z. G., & Connell, L. (2015). Space-time interdependence: Evidence against asymmetric mapping between time and space. Cognition, 136C, 268-281.

16.

Casasanto, D., & Boroditsky, L. (2008). Time in the mind: using space to think about time. Cognition, 106(2), 579-593.

17.

Casasanto, D., Fotakopoulou, O., & Boroditsky, L. (2010). Space and time in the child’s mind:Evidence for a cross-dimensional asymmetry. Cognitive Science, 34(3), 387-405.

18.

Casini, L., Pech-Georgel, C., & Ziegler, J. C. (2018). It’s about time: revisiting temporal processing deficits in dyslexia. Developmental Science, 21(2), 1-14.

19.

Charras, P., Droit-Volet, S., Brechet, C., & Coull, J. T. (2017). The spatial representation of time can be flexibly oriented in the frontal or lateral planes from an early age. Journal of Experimental Psychology Human Perception and Performance, 43(4), 832-845.

20.

Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal of Experimental Psychology. Animal Behavior Processes, 3(3), 216-228.

21.

Church, R. M., & Gibbon, J. (1982). Temporal generalization. Journal of Experimental Psychology. Animal Behavior Processes, 8(2), 165-186.

22.

Cicchini, G. M., Anobile, G., & Burr, D. C. (2014). Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform. Proceedings of the National Academy of Sciences of the United States of America, 111(21), 7867-72.

23.

Conson, M., Cinque, F., Barbarulo, A. M., &Trojano, L. (2008). A common processing system for duration, order and spatial information: Evidence from a time estimation task. Experimental Brain Research, 187(2), 267-274.

24.

Coull, J. T., Charras, P., Donadieu, M., Droit-Volet, S., & Vidal, F. (2015). SMA selectively codes the active accumulation of temporal, not spatial, magnitude. Journal of Cognitive Neuroscience, 27, 2281-2298.

25.

Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science, 303(5663), 1506-1508.

26.

Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences, 100(4), 2157-2162.

27.

Deuker, L., Bellmund, J. L., Navarro Schröder, T., & Doeller, C. F. (2016). An event map of memory space in the hippocampus. ELife, 5, e16534.

28.

Eichenbaum, H. (2014). Time (and space) in the hippocampus. Current Opinion in Behavioral Sciences, 17, 65-70.

29.

Eichenbaum, H. (2017). On the integration of space, time, and memory. Neuron, 95(5), 1007-1018.

30.

Frassinetti, F., Magnani, B., & Oliveri, M. (2009). Prismatic lenses shift time perception. Psychological Science, 20(8), 949-954.

31.

Friedman, W. J., & Laycock, F. (1989). Children’s analog and digital clock knowledge. Child Development, 60, 357-371.

32.

Friedman, W. J., & Lyon, T. D. (2005). The development of temporal-reconstructive abilities. Child Development, 76, 1202-1216.

33.

Gallistel, C. R. (1999). Coordinate transformations in the genesis of directed action. In B. O. M. Bly & D. E. Rummelhart (Eds.), Cognitive science (pp. 1-42). New York: Academic.

34.

Gauthier, B., & van Wassenhove, V. (2016). Time ss not space: core computations and domainspecific networks for mental travels. Journal of Neuroscience, 36(47), 11891-11903.

35.

Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychological Review, 84(3), 279-325.

36.

Gibbon, J., & Church, R. M. (1981). Time left:linear versus logarithmic subjective time. Journal of Experimental Psychology. Animal Behavior Processes, 7(2), 87-107.

37.

Gosse, L. L., & Roberts, K. P. (2013). Children’s use of a ‘Time line’ to indicate when events occurred. Journal of Police and Criminal Psychology, 29(1), 36-43.

38.

Hendricks, R. K., & Boroditsky, L. (2015). Constructing mental time without visual experience. Trends in Cognitive Sciences, 19(8), 1-2.

39.

Howard, M. W. (2018). Memory as perception of the past: Compressed time in mind and brain. Trends in Cognitive Sciences, 22(2), 124-136.

40.

Howard, M. W., & Eichenbaum, H. (2013). The hippocampus, time, and memory across scales. Journal of Experimental Psychology. General, 142(4), 1211-1230.

41.

Howard, M. W., MacDonald, C. J., Tiganj, Z., Shankar, K. H., Du, Q., Hasselmo, M. E., & Eichenbaum, H. (2014). A Unified mathematical framework for coding time, space, and sequences in the hippocampal region. Journal of Neuroscience, 34(13), 4692-4707.

42.

Howard, M. W., Shankar, K. H., Aue, W. R., & Criss, A. H. (2015). A distributed representation of internal time. Psychological Review, 122(1), 24-53.

43.

Ishihara, M., Keller, P., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: Evidence for the STEARC effect. Cortex, 44, 454-461.

44.

James, W. (1890). The principles of psychology, Vol. 1. New York, NY, US: Henry Holt and Co.

45.

Kim, D., & Opfer, J. E. (2017). A unified framework for bounded and unbounded numerical estimation. Developmental Psychology, 53(6), 1088-1097.

46.

Kim, J., Ghim, J.-W., Lee, J. H., & Jung, M. W. (2013). Neural correlates of interval timing in rodent prefrontal cortex. Journal of Neuroscience, 33(34), 13834-13847.

47.

Kraus, B. J., Brandon, M. P., Robinson, R. J., Connerney, M. A., Hasselmo, M. E., &Eichenbaum, H. (2015). During running in place, grid cells integrate elapsed yime and distance run. Neuron, 88(3), 578-589. https://doi.org/10.1016/j.neuron.2015.09.031

48.

Kyle, C. T., Stokes, J. D., Lieberman, J. S., Hassan, A. S., & Ekstrom, A. D. (2015). Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms. ELife, 4, e10499.

49.

Lee, S.& Jeong, S. K. (2018).The effects of age and event structure on timeline estimation task. In Kalish, C., Rau, M., Rogers, T., Zhu, J., Vlach, H., Lupyan, G., Binzak, J., Plate, R., & Seidenberg, M. (Eds.). Proceedings of the 40th Annual Meeting of the Cognitive Science Society. Madison, WS: Cognitive Science Society.

50.

Lewis, P. A., & Miall, R. C. (2009). The precision of temporal judgement: milliseconds, many minutes, and beyond. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1897-1905.

51.

Libby, L. A., Hannula, D. E., & Ranganath, C. (2014). Medial temporal lobe coding of item and spatial information during relational binding in working memory. Journal of Neuroscience, 34(43), 14233-14242.

52.

Lipton, P. A., & Eichenbaum, H. (2008). Complementary roles of hippocampus and medial entorhinal cortex in episodic memory. Neural Plasticity, 2008, 1-8.

53.

Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873-881.

54.

MacDonald, C. J., Lepage, K. Q., Eden, U. T., &Eichenbaum, H. (2011). Hippocampal “tme cells” bridge the gap in memory for discontiguous events. Neuron, 71(4), 737-749.

55.

Merritt D. J., Casasanto D., & Brannon E. M. (2010). Do monkeys think in meta- phors? Representations of space and time in monkeys and humans. Cognition, 117, 191-202.

56.

Murdock, B. B., & Crowder, R. G. (1977). Principles of learning and memory. The American Journal of Psychology, 90(2), 329.

57.

Pastalkova, E., Itskov, V., Amarasingham, A., &Buzsáki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science, 321(5894), 1322-1327.

58.

Pathman, T., & Ghetti, S. (2014). The eyes know time: A novel paradigm to reveal the development of temporal memory. Child Development, 85(2), 792-807.

59.

Pathman, T., Larkina, M., Burch, M., & Bauer, P. J. (2013). Young children’s memory for the times of personal past events. Journal of Cognition and Development, 14(1), 120-140.

60.

Rakitin, B. C., Gibbon, J., Penney, T. B., Malapani, C., Hinton, S. C., & Meck, W. H. (1998). Scalar expectancy theory and peakinterval timing in humans. Journal of Experimental Psychology. Animal Behavior Processes, 24(1), 15-33.

61.

Rey, V., De Martino, S., Espesser, R., & Habib, M. (2002). Temporal processing and phonological impairment in dyslexia: Effect of phoneme lengthening on order judgment of two consonants. Brain and Language, 80, 576-591.

62.

Salz, D. M., Tiganj, Z., Khasnabish, S., Kohley, A., Sheehan, D., Howard, M. W., &Eichenbaum, H. (2016). Time cells in hippocampal area CA3. Journal of Neuroscience, 36(28), 7476-7484.

63.

Sederberg, P. B., Miller, J. F., Howard, M. W., & Kahana, M. J. (2010). The temporal contiguity effect predicts episodic memory performance. Memory & Cognition, 38(6), 689-699.

64.

Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428-444.

65.

Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic to linear shift: One larning sequence, many tasks, many time scales. Mind, Brain, and Education, 3(3), 143-150.

66.

Siegler, R., & Opfer, J. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 237-243.

67.

Singh, I., & Howard, M. W. (preprint). Scanning along a compressed timeline of the future, BioRxiv, 1-16.

68.

Singh, I., Tiganj, Z., & Howard, M. W. (2018). Is working memory stored along a logarithmic timeline? Converging evidence from neuroscience, behavior and models, Neurobiology of Learning and Memory, 153, 104-110.

69.

Tiganj, Z., Cromer, J. A., Roy, J. E., Miller, E. K., & Howard, M. W. (2018). Compressed timeline of recent experience in monkey lateral prefrontal cortex. Journal of Cognitive Neuroscience, 30(7), 935-950.

70.

Tiganj, Z., Gershman, S. J., Sederberg, P. B., &Howard, M. W. (preprint). Estimating scale-invariant future in continuous time, 1-18.

71.

Walsh, V. (2003). A theory of magnitude:Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483-488.

72.

Wearden, J. H., & Jones, L. A. (2007). Is the growth ofsubjective time in humans a linear or nonlinear function of real time? Quarterly Journal of Experimental Psychology, 60(9), 1289-1302.

73.

Woo S. H., Kim K. H., & Lee K. M. (2009). The role of the right posterior parietal cortex in temporal order judgment. Brain and Cognition, 69(2), 337-343.

74.

Xuan B., Zhang D., He S.,, Chen X. (2007). Larger stimuli are judged to last longer. Journal of Vision, 7(10), 131-5.

75.

Zélanti, P. S., & Droit-Volet, S. (2011). Cognitive abilities explaining age-related changes in time perception of short and long durations. Journal of Experimental Child Psychology, 109(2), 143-157.

logo