바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Developmental Invariance in the Statistical Learning of Target Location Probability

Abstract

Regularities in the learning environment allow us to make predictions and guide behavior. Growing evidence of location probability learning (LPL) demonstrates that the statistical regularity of target locations affects spatial attention allocation. However, existing studies on LPL mostly focus on learning in adults. To achieve a comprehensive understanding of the mechanism of LPL, we investigated the effect of target location probability on visual search in children aged 5 to 9 years compared to adults. Both children and adults responded faster when the target appeared in the high probability "rich" quadrant than in the low probability "sparse" quadrants of the search space. Importantly, the magnitude of the bias was constant across participants of various ages and not dependent on individual differences in executive functions. These results provide novel evidence that implicit statistical learning of target locations occurs early in development and remains stable until early adulthood and this is a distinct developmental pattern from learning of explicit goal-driven spatial attention.

keywords
Submission Date
2020-10-15
Revised Date
2020-11-29
Accepted Date
2020-12-01

Reference

1.

Adler, S. A., & Orprecio, J. (2006). The eyes have it: Visual pop-out in infants and adults. Developmental Science, 9(2), 189–206.

2.

Amso, D., & Davidow, J. (2012). The development of implicit learning from infancy to adulthood: Item frequencies, relations, and cognitive flexibility. Developmental Psychobiology, 54 (6), 664 –673.

3.

Aslin, R. N. (2017). Statistical learning: a powerful mechanism that operates by mere exposure. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2), 1–7.

4.

Atwell, J. A., Conners, F. A., & Merrill, E. C. (2003). Implicit and explicit learning in young adults with mental retardation. American Journal on Mental Retardation, 108(1), 56-68.

5.

Billingsley, R. L., Smith, M. L., & McAndrews, M. P. (2002). Developmental patterns in priming and familiarity in explicit recollection. Journal of Experimental Child Psychology, 82(3), 251-277.

6.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.

7.

Bussy, G., Charrin, E., Brun, A., Curie, A., & des Portes, V. (2011). Implicit procedural learning in fragile X and Down syndrome. Journal of Intellectual Disability Research, 55(5), 521–528.

8.

Carroll, M., Byrne, B., & Kirsner, K. (1985). Autobiographical memory and perceptual learning: A developmental study using picture recognition, naming latency, and perceptual identification. Memory & Cognition, 13(3), 273-279.

9.

Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention.Cognitive Psychology, 36(1), 28–71.

10.

Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation for the behavioral sciences. Hillsdale, NJ: Lawrence Earlbaum.

11.

Couperus, J. W., Hunt, R. H., Nelson, C. A., & Thomas, K. M. (2011). Visual search and contextual cueing: Differential effects in 10-year-old children and adults. Attention, Perception, and Psychophysics, 73(2), 334–348.

12.

Cronbach, L. J., & Furby, L. (1970). How weshould measure “change”: Or should we? Psychological Bulletin, 74(1), 68–80.

13.

Curran, T., & Keele, S. W. (1993). Attentional and non-attentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(1), 189–202.

14.

Dienes, Z., & Berry, D. (1997). Implicit learning: Below the subjective threshold. Psychonomic Bulletin & Review, 4(1), 3–23.

15.

Dixon, M. L., Zelazo, P. D., & De Rosa, E. (2010). Evidence for intact memoryguided attention in school-aged children. Developmental Science, 13(1), 161–169.

16.

Drag, L. L., & Bieliauskas, L. A.(2010). Contemporary Review 2009: Cognitive Aging. Journal of Geriatric Psychiatry and Neurology, 23(2), 75–93.

17.

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.

18.

Finn, A. S., Kalra, P. B., Goetz, C., Leonard, J. A., Sheridan, M. A., & Gabrieli, J. D. E. (2016). Developmental dissociation between the maturation of procedural memory and declarative memory. Journal of Experimental Child Psychology, 142, 212–220.

19.

Foster, J. J., Bsales, E. M., Jaffe, R. J.,& Awh, E. (2017). Alpha-band activity reveals spontaneous representations of spatialposition in visual working memory. Current Biology, 27(20), 3216-3223.

20.

Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latentvariable analysis. Journal of Experimental Psychology: General, 133(1), 101–135.

21.

Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13 (6), 520–525.

22.

Goschy, H., Bakos, S., Mueller, H. J., & Zehetleitner, M. (2014). Probability cueing of distractor locations: Both intertrial facilitation and statistical learning mediate interference reduction. Frontiers in Psychology, 5, 1–11.

23.

Hayes, N. A., & Broadbent, D. E.(1988). Two modes of learning for interactive tasks. Cognition, 28(3),249–276.

24.

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–1186.

25.

Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory: Correlated or complicated? Cortex, 49(8), 2001–2006.

26.

JASP Team (2020). JASP (Version 0.12.2) [Computer software].

27.

Jiang, Y. V. (2018). Habitual versus goal-driven attention. Cortex, 102 , 107–120.

28.

Jiang, Y. V., Capistrano, C. G., Esler, A. N., & Swallow, K. M. (2013). Directing attention based on incidental learning in children with autism spectrum disorder. Neuropsychology, 27(2), 161–169.

29.

Jiang, Y. V., & Chun, M. M. (2001). Selective attention modulates implicit learning. The Quarterly Journal of Experimental Psychology Section A, 54(4), 1105–1124.

30.

Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013). Guidance of spatial attention by incidental learning and endogenous cuing. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 285–297.

31.

Jiang, Y. V., Swallow, K. M., Rosenbaum, G.M., & Herzig, C. (2013). Rapid acquisition but slow extinction of an attentional bias in space. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 87–99.

32.

Jiang, Y. V., Swallow, K. M., Won, B.-Y.,Cistera, J. D., & Rosenbaum, G. M. (2015). Task specificity of attention training: the case of probability cuing. Attention, Perception, & Psychophysics, 77(1), 50–66.

33.

Jiang, Y. V., Won, B., & Swallow, K. M. (2014). First saccadic eye movement reveals persistent attentional guidance by implicit learning. Journal of Experimental Psychology: Human Perception and Performance, 40(3), 1161–1173.

34.

Klenberg, L., Korkman, M., & Lahti-Nuuttila, P. (2001). Differential development of attention and executive functions in 3-to 12- year-old Finnish children. Developmental Neuropsychology, 20(1), 407–428.

35.

Lookadoo, R., Yang, Y., & Merrill, E. C. (2017). Encouraging top-down attention in visual search: A developmental perspective. Attention, Perception, and Psychophysics, 79(7),2007–2020.

36.

Manza, L., & Reber, A. S. (1997). Representing artificial grammars: Transfer across stimulus forms andmodalities. In How Implicit Is Implicit Learning? (pp. 73 –106). Oxford University Press.

37.

Meulemans, T., & Van der Linden, M. (2003). Implicit learning of complex information in amnesia. Brain and Cognition, 52, 250 –257.

38.

Nosofsky, R. M., Denton, S. E., Zaki, S. R., Murphy-Knudsen, A. F., & Unverzagt, F. W. (2012). Studies of implicit prototype extraction in patients with mild cognitive im- pairment and early Alzheimer’s disease. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 860–880.

39.

Pellicano, E., Smith, A. D., Cristino, F.,Hood, B. M., Briscoe, J., & Gilchrist, I. D. (2011). Children with autism are neither systematic nor optimal foragers. Proceedings of the National Academy of Sciences of the United States of America, 108(1),421–426.

40.

Poldrack, R. A., Clark, J., Paré-Blagoev,E. J., Shohamy, D., Creso Moyano, J., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414(6863),546–550.

41.

Reber, A. S. (1989). Implicit Learning and Tacit Knowledge. Journal of ExperimentalPsychology: General, 118(3),219–235.

42.

Reber, P. J. (2013). The neural basis of implicit learning and memory: a review of neuropsychological and neuroimagingresearch. Neuropsychologia, 51(10), 2026-2042.

43.

Reber, P. J., Martinez, L. A., & Weintraub, S. (2003). Artificial grammar learning in Alzheimer’s disease. Cognitive, Affective, & Behavioral Neuroscience, 3(2), 145-153.

44.

Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., & Posner, M. I. (2004). Development of attentional networks in childhood. Neuropsychologia, 42(8),1029–1040.

45.

Schneegans, S., & Bays, P. M. (2017). Neural architecture for feature binding in visual working memory. Journal of Neuroscience, 37(14), 3913–3925.

46.

Sisk, C. A., Remington, R. W., & Jiang, Y. V. (2019). Mechanisms of contextual cueing: A tutorial review. Attention, Perception, & Psychophysics, 81(8), 2571–2589.

47.

Sisk, C. A., Twedell, E. L., Koutstaal, W., Cooper, S. E., & Jiang, Y. V. (2018). Implicitly-learned spatial attention is unimpaired in patients with Parkinson’s disease. Neuropsychologia, 119, 34–44.

48.

Thomas, K. M., Hunt, R. H., Vizueta,N.,Sommer, T., Durston, S., Yang, Y., & Worden, M. S. (2004). Evidence of developmental differences in implicit sequence learning: An fMRI study of children and adults. Journal of Cognitive Neuroscience, 16(8), 1339–1351.

49.

Twedell, E. L., Koutstaal, W., & Jiang, Y. V. (2017). Aging affects the balance between goal-guided and habitual spatial attention. Psychonomic Bulletin & Review, 24(4), 1135–1141.

50.

Vadillo, M. A., Linssen, D., Orgaz, C., Parsons, S., & Shanks, D. R. (2020). Unconscious or underpowered? Probabilistic cuing of visual attention. Journal of Experimental Psychology: General, 149(1), 160–181.

51.

Vaidya, C. J., Huger, M., Howard, D. V., & Howard, J. H. (2007). Developmental Differences in Implicit Learning of Spatial Context. Neuropsychology, 21(4), 497–506.

52.

Wang, B., Samara, I., & Theeuwes, J.(2019). Statistical regularities bias overt attention. Attention, Perception, and Psychophysics, 81(6), 1813–1821.

53.

Weintraub, S., Dikmen, S. S., Heaton, R.K., Tulsky, D. S., Zelazo, P. D., Bauer, P. J., Carlozzi, N. E., Slotkin, J., Blitz, D., Wallner-Allen, K., Fox, N. A., Beaumont, J. L., Mungas, D., Nowinski, C. J., Richler, J., Deocampo, J. A., Anderson, J. E., Manly, J. J., Borosh, B., Havlik, R., Conway, K., Edwards, E., Freund, L., King, J. W., Moy, C., Witt, E., & Gershon, R. C. (2013). Cognition assessment using the NIH Toolbox. Neurology, 80(11), S54–S64.

54.

Won, B.-Y., & Jiang, Y. V. (2015).Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 787–806.

55.

Yang, Y., & Merrill, E. C. (2015). The impact of signal-to-noise ratio on contextual cueing in children and adults. Journal of Experimental Child Psychology, 132, 65–83.

logo