바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1738-3110
  • E-ISSN2093-7717
  • SCOPUS, ESCI

US Purchasing Managers’ Index and its Impact on Korea and US

The Journal of Distribution Science / The Journal of Distribution Science, (P)1738-3110; (E)2093-7717
2017, v.15 no.3, pp.17-25
https://doi.org/https://doi.org/10.15722/jds.15.3.201703.17
Jeon, Ji-Hong

Abstract

Purpose - The study is to examine the impact of the US Purchasing Managers' Index (PMI) on Korea and the US industrial economy including the distribution industry. We analyze its effect on the industrial economy centered on the distribution industry using economy indices in Korea and the US. Research design, data, and methodology - The variables are used to analyze the dynamic relationship which occurs among the US PMI, the industrial production index, producer price index, unemployment rate, and manufacturing Inventories Index in Korea and the US from January 1990 to July 2016 using Vector Error Correction Model. Results - As a main result, the impact of the US PMI on all the economy indices both Korea and the US has the same cyclical movement. The US PMI is positively related to the producer price and the industrial production index of Korea and the US, while it is negatively related to unemployment rate, and the manufacturing inventories index in Korea and the US. Conclusions - The US PMI as an advanced index has a power to predict the economies on Korea and the US. In the end, we find that the US PMI has a great impact on Korea and the US industrial economy.

keywords
Distribution Industry, PMI, IPI, PPI, VECM

Reference

1.

Afshar, T. (2007). Stock Return, Consumer Confidence, Purchasing Managers' Index and Economic Fluctuations. Journal of Business & Economics Research, 5(8), 97-106. doi:10.19030/jber.v5i8.2575.

2.

Banerjee, A., & Marcellino, M. (2006). Are There Any Reliable Leading Indicators for US Inflation and GDP Growth?. International Journal of Forecasting, 22(1), 137-151. doi:10.1016/j.ijforecast.2005.03.005.

3.

Benkwitz, A., Lütkepohl, H., & Wolters, J. (2001). Comparison of Bootstrap Confidence Intervals for Impulse Responses of German Monetary Systems. Macroeconomic Dynamics, 5(1), 81-100. doi:10.1017/S13 6510 0501018041.

4.

Bretz, R. J. (1990). Behind the Economic Indicators of the NAPM Report on Business. Business Economics, 25(3), 42-50.

5.

Cho, D. I., & Ogwang, T. (2006). Conceptual Perspectives on Selecting the Principal Variables in the Purchasing Managers' Index. Journal of Supply Chain Management, 42(2), 44-52. doi:10.1111/j.1745-493X. 2006.00011.x.

6.

Conesa, C., Gambacorta, L., Gorjon, S., & Lombardi, M. (2015). The Use of Payment Systems Data as Early Indicators of Economic Activity. Applied Economics Letters, 22(8), 646-650. doi:10.1080/13504851.2014. 964826.

7.

Dasgupta, S., & Lahiri, K. (1992). A Comparative Study of Alternative Methods of Quantifying Qualitative Survey Response Using NAPM Data. Journal of Business and Economic Statistics, 10(4), 391-400. doi:10.1080/073500 15.1992.10509914.

8.

Eathington, L., & Swenson, D. (2010). Development of a Purchasing Managers' Index for Biobased Products. CIRAS Pilot Project Report, Retrieved from http://www.ciras.iastate.edu/bioindustry/biobasedproducts/Report3.pdf

9.

Engle, R. F., & Granger, C. W. J. (1987). Co-integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251-276.

10.

Gerlach, S. (2011). ECB Repo Rate Setting during the Financial Crisis. Economics Letters, 112(2), 186-188. doi:10.1016/j.econlet.2011.04.011.

11.

Giannone, D., Reichlin, L., & Small, D. (2008). Nowcasting:The Real-time Information Content of Macroeconomic Data. Journal of Monetary Economics, 55(4), 665-676. doi:10.1016/j.jmoneco.2008.05.010.

12.

Granger, C. W. J. (1980). Testing for Causality, A Personal Viewpoint. Journal of Economic Dynamics and Control, 2(4), 329-352. doi:10.1016/0165-1889(80)90069-X.

13.

Granger, C. W. J., & Newbold, P. (1974). Spurious Regression in Econometrics. Journal of Econometrics, 2(2), 111-120. doi:10.1016/j.jeconom.2012.01.019.

14.

Jung, M. H., Bae, D. I., & Yun, J. C. (2014). The Effects of SNS Characteristics on Purchase Intention. The East Asian Journal of Business Management, 4(3), 19-25. doi:10.13106/eajbm.2014.vol4.no3.19.

15.

Kauffman, R. G. (1999). Indicator Qualities of the NAPM Report on Business. Journal of Supply Chain Management, 35(2), 29-37. doi:10.1111/j.1745-493X.1999.tb00234.x.

16.

Kim, G. (2014). Response in Semi Industry to Impact from Change in Money Supply and Expectations-Focusing on Pass-through. International Business Review, 18(1), 43-72. doi:10.21739/IBR.2014.03.18.1.43.

17.

Kim, P. J., & Lee, J. Y. (2016). A Study on the Effects of Perceived Quality on Whitening Cosmetics'Satisfaction and Repurchase: Focused on University Students. The East Asian Journal of Business Management, 6(2), 15-22. doi:10.13106/eajbm.2016. vol6.no2.15.

18.

Kumari, N. (2015). Managing Business Quality Using a Performance Management System. International Journal of Industrial Distribution & Business, 6(3), 9-17. doi:10.13106/ijidb.2015.vol6.no3.9.

19.

Lahiri, K., & George, M. (2013). Nowcasting US GDP: The Role of ISM Business Surveys. International Journal of Forecasting, 29(4), 644-658. doi:10.1016/j.ijforecast.2012.02.010.

20.

Lindsey, M. D., & Pavur, R. J. (2005). As The PMI turns: A Tool for Supply Chain Managers. Journal of Supply Chain Management, 41(1), 30-39. doi:10.1111/j.1745-493X.2005.tb00182.x.

21.

Mehyaoul, Q. (2014). Country Analysis: Algeria. The East Asian Journal of Business Management, 5(3), 29-31. doi:10.13106/eajbm.2014.vol5.no3. 29.

22.

Stock, J. H., & Watson, M. W. (2002a). Macroeconomic Forecasting Using Diffusion Indexes. Journal of Business and Economics Statistics, 20(2), 147-162. doi:10.1198/073500102317351921.

23.

Stock, J. H., & Watson, M. W. (2002b). Forecasting Using Principal Component from A Large Number of Predictors. Journal of the American Statistical Association, 97(460), 147-162. doi:10.1198/016214502388618960.

24.

Tsuchiya, Y. (2012). Is the Purchasing Managers' Index Useful for Assessing the Economy's Strength? A Directional Analysis. Economics Bulletin, 32 (2), 1302-1311. doi:10.2139/ssrn.1766380.

The Journal of Distribution Science