바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN2466-2542
  • KCI

클러스터링을 이용한 시소러스 브라우저의 설계에 대한 이론적 연구

A Theoretical Study of Designing Thesaurus Browser by Clustering Algorithm

한국도서관·정보학회지 / Journal of Korean Library and Information Science Society, (P)2466-2542;
1999, v.30 no.3, pp.427-456
Seo, Hwi

Abstract

This paper deals with the problems of information retrieval through full-test database which arise from both the deficiency of searching strategies or methods by information searcher and the difficulties of query representation, generation, extension, etc. In oder to solve these problems, we should use automatic retrieval instead of manual retrieval in the past. One of the ways to make the gap narrow between the terms by the writers and query by the searchers is that the query should be searched with the terms which the writers use. Thus, the preconditions which should be taken one accorded way to solve the problems are that all areas of information retrieval such as should taken one accorded way to solve the problems are that all areas of information retrieval such as contents analysis, information structure, query formation, query evaluation, etc. should be solved as a coherence way. We need to deal all the ares of automatic information retrieval for the efficiency of retrieval thought this paper is trying to solve the design of thesaurus browser. Thus, this paper shows the theoretical analyses about the form of information retrieval, automatic indexing, clustering technique, establishing and expressing thesaurus, and information retrieval technique. As the result of analyzing them, this paper shows us theoretical model, that is to say, the thesaurus browser by clustering algorithm. The result in the paper will be a theoretical basis on new retrieval algorithm.

keywords

참고문헌

1.

서휘. .

2.

Miyamoto, S.. (1990). Information Retrieval Based on Fuzzy Associations. Fuzzy Sets and Systems, 38, 191-205.

3.

노정순. (1999). 탐색결과에 근거한 자연어질의 자동확장 및 응용에 관한 연구 고찰. 정보관리학회지, 16(2), 49-80.

4.

Frakes, William B.;Baeza-Yates, Richardo. .

5.

Voorhees, E. M.. (1986). Implementing Agglomerative Hierachic clustering Algorithms for Use in Document Retrieval. Information Processing & Management, 22, 465-476.

6.

정영미;이재윤. (1998). 한국어 텍스트 내 용어연관성 분석을 위한 기초 연구. 한국정보관리학회 학술대회 논문집, 5, 243-246.

7.

한상길. .

8.

Jones Susan(and Others). (1995). Interactive thesaurus navigation : intelligence rules OK?. JASIS, 46(1), 52-59.

9.

Peat, Helen J.;Willett, Peter. (1991). The Limitations of Term Co-Occurrence Data for Query Expansion in Document Retrieval Systems. JASIS, 42(5), 378-383.

10.

Tudhope, Douglas. .

11.

Lancaster, F. W.. .

12.

남영준. .

13.

이재윤;김태수. (1998). Wordnet과 시소러스. 언어정보 연찬회 발표논문집, 11, 1-19.

14.

Salton, Gerald. .

15.

Weinberg, B. H.. (1995). Library classification and information retrieval thesauri : comparison and contrast. Cataloging and Classification Quarterly, 19(3/4), 23-44.

16.

Van Rijisbergen, C. J.. .

한국도서관·정보학회지