바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN2466-2542
  • KCI

Mendeley를 통한 문헌정보학 주요 분야 연구 논문의 독자 분석

Study on Readers about Library and Information Science Fields’ Articles by Analyzing Mendeley

한국도서관·정보학회지 / Journal of Korean Library and Information Science Society, (P)2466-2542;
2017, v.48 no.1, pp.77-97
https://doi.org/10.16981/kliss.48.1.201703.77
조재인 (인천대학교)

초록

웹 기반의 참고문헌관리도구를 통해서는 실무자, 교육자, 학생 등과 같이 학계 밖의 독자들에 대한 영향력을 추정할 수 있을 뿐 아니라, 어떠한 신분과 전공 분야의 독자들이 논문을 읽고 있는지 추적할 수 있다. 본 연구는 참고문헌관리도구인 Mendeley의 독자 분석을 통하여, 문헌정보학 연구 논문이 어떠한 신분과 전공의 독자들에게 읽히고 있는지 분석했으며, Mendeley 독자수와 피인용도간에는 어떠한 상관성이 있는지 조사하였다. 독자의 신분과 전공을 분석한 결과, 문헌정보학/정보학 전공자이외에도, 경영학, 의학, 교육학 분야 등에 독자들이 분포되어 있었으며, 독자들의 학술적 신분과 전공에 따라 상대적으로 많이 읽고 있는 논문의 주제 영역에 유의미한 차이(p=.000)가 존재하는 것으로 분석되었다. 한편, Mendeley에 저장된 논문의 피인용도와 Mendeley 독자수간의 관계를 피어슨 상관계수(Pearson correlation coefficient) 산출을 통해 분석한 결과, r=0.585의 상관성이 있는 것으로 나타났으며, 교수와 같이 주로 인용을 목적으로 논문을 읽는 저자 그룹으로 제한할 경우 r=0.619의 강한 상관성이, 사서와 같이 실무적 문제 해결과 학습을 위해 논문을 읽는 비저자 그룹으로 제한할 경우 r=0.384로 약한 상관성이 나타나는 것으로 분석되었다.

keywords
Altmetrics, Citation Rates, Library and Information Science, Mendeley, Social Reference Management, Altmetrics, 피인용도, 문헌정보학, Mendeley, 참고문헌관리도구

Abstract

With reference management tool based on web, we could understand not only impact about non-author, such as hand-on worker, educator, who are out of academia, but also trace the subject fields of readers and their status. This study by analyzing mendeley, understand what kinds of subject fields and status of readers read library and information science field articles. As a result of analyzing the status and the major of the reader, readers were distributed in the fields of business administration, education and so on, and according to the reader's major, there was a significant difference (p = .000) between the subject area of ​​relatively read a lot. By the way, as the result of relational analysis between citation rate and numbers of mendeley readership about medeley saved articles, correlation coefficient shows 0.585, however as the result of relational analysis limiting the groups, in case of author group who tends to read the articles for citing, correlation coefficient shows 0.619. On the other hand, non-author group shows 0.384.

keywords
Altmetrics, Citation Rates, Library and Information Science, Mendeley, Social Reference Management, Altmetrics, 피인용도, 문헌정보학, Mendeley, 참고문헌관리도구

참고문헌

1.

박진영. 2012. 근거중심의학(EBM) 정보서비스 도입을 위한 연구 : 임상 전공의의 정보이용행태와 EBM에 대한 인식을 바탕으로 . 석사학위논문, 명지대학교 문헌정보학과.

2.

조재인. 2015. Altmetrics를 통한 연구의 영향력 평가에 관한 연구. 한국도서관정보학회지 , 46(1): 65-81

3.

林 和弘, 2013. 研究論文の影響度を測定する新しい動き : 論文単位で即時かつ多面的な測定を可能とするAltmetrics. 科学技術動向 , 3-4: 20-29.

4.

Aabo, S., and and R. Audunson. 2012, “Use of Library Space and the Library as Place.” Library & Information Science Research, 34(2): 138–149.

5.

Alhoori, H., & R. Furuta. 2014. “Do Altmetrics Follow the Crowd or Does the Crowd Follow Altmetrics?” IEEE/ACM Joint Conference on Digital Libraries, 375–378. <doi:10.1109/JCDL.2014.6970193> [cited 2016. 3. 5].

6.

Bornmann, Lutz. 2014. Alternative Metrics in Scientometrics : A Meta-analysis of Research into Three Altmetricss.. <http://arxiv.org/abs/1407.8010> [cited 2016. 12. 10].

7.

Charnigo, L. and P. Barnett-Ellis. 2007. “Checking out Facebook.com : The Impact of a Digital Trend on Academic Libraries.” Information Technology and Libraries, 26(1). <:http://dx.doi.org/10.6017/ital.v26i1.3286> [cited 2016. 12. 5].

8.

Clark, T., Jones, M. and C. Armstrong. 2007. “The Dynamic Structure of Management Support Systems: Theory Development, Research Focus, and Direction.” MIS Quarterly, 31(3): 579-615.

9.

Connaway, S., Dickey, J. and M. Radford. 2011. “If It is too Inconvenient I'm not Going After It: Convenience As a Critical Factor in Information-seeking Behaviors.” Library and Information Science Research, 33: 179-190.

10.

Costas, R., Z. Zahedi and P. Wouters. 2015. “Do “altmetrics” Correlate with Citations? Extensive Comparison of Altmetric Indicators with Citations from a Multidisciplinary Perspective.” Journal of the Association for Information Science and Technology, 66(10) : 2003-2019.

11.

Hammarfelt, B. 2014. “Using Altmetrics for Assessing Research Impact in the Humanities.” Scientometrics, 101(2): 1419-1430.

12.

Haustein, S.,I. Peters, J. Bar-Ilan, J. Priem, H. Shema, &J. Terliesner. 2013. 2013. “Coverage and Adoption of Altmetrics Sources in the Bibliometric Community.” In Proceedings of ISSI 2013 -14th International Society of Scientometrics and Informetrics Conference, 1: 468–483.

13.

Haustein, S., I. Peters, C. R. Sugimoto, M. Thelwall, and V. Lariviere. 2014. “Tweeting Biomedicine: An Analysis of Tweets and Citations in the Biomedical Literature.” Journal of the Association for Information Science and Technology, 65(4): 656–669.

14.

Leidner, D., and T. Kayworth. 2006. “Review : A Review of Culture in Information Systems Research: Toward a Theory of Information Technology Culture Conflict.” Mis Quarterly, 30(2): 357-399

15.

Lewis, D. 2012, “The Inevitability of Open Access.” College & Research Libraries, 73(5): 493-506.

16.

Li, N., & D. Gillet. 2013. “Identifying Influential Scholars in Academic Social Media Platforms.” In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining ASONAM, – 13: 608–614) <doi:10.1145/2492517.2492614> [cited 2016. 3. 5] .

17.

Mohammadi, E., & M. Thelwall. 2014. “Mendeley Readership Altmetrics for the Social Sciences and Humanities: Research Evaluation and Knowledge Flows.” Journal of the Association for Information Science and Technology, 65(8): 1627–1638. <doi:10.1002/asi.23071> [cited 2016. 3. 5].

18.

Mohammadi, E., M. Thelwall, S. Haustein, and V. Lariviere. 2015. “Who Reads Research Articles? An Altmetrics Analysis of Mendeley User Categories.” Journal of the American Society for Information Science, 66(9): 1832-1846.

19.

Ortega, J. L. 2015. “Relationship between Altmetric and Bibliometric Indicators across Academic Social Sites: The Case of CSIC’s members.” Journal of Informetrics, 9(1): 39–49.

20.

Petter, S., W. DeLone. and E. McLean. 2008. “Measuring Information Systems Success:Models, Dimensions, Measures, and Interrelationships.” European Journal of nformation System, 17(3): 236–263.

21.

Rourke, L. and H. Kanuka. 2007, “Barriers to Online Critical Discourse.” International Journal Of Computer-Supported Collaborative Learning, 2(1): 105-126.

22.

Schlögl, C., J. Gorraiz, C. Gumpenberger, K. Jack, & P. Kraker. 2014. “Comparison of Downloads, Citations and Readership Data for Two Information Systems Journals.” Scientometrics, 101(2): 1113–1128.

23.

Tenopir, C., King, D., Spencer, J. and Wu, L. 2009. “Variations in Article Seeking and Reading Patterns of Academics: What Makes a Difference?.” Library & Information Science Research, 31.3: 139–148.

24.

Zahedi, Z., R. Costas, P. Wouters, P. 2014. “How Well Developed are Altmetrics? A Cross-disciplinary Analysis of the Presence of ‘Alternative Metrics’ in Scientific Publications.” Scientometrics, 101(2): 1491-1513. <doi :10.1007/s11192 -014-1264-0> [cited 2016. 11. 5].

한국도서관·정보학회지