ISSN : 2466-2542
공공도서관 대출데이터를 활용하여 이용자의 정보 이용행위를 이해하려는 노력이 꾸준히 이어지고 있다. 본 연구에서는 공공도서관 이용자가 동시에 대출한 도서들의 주제 분야를 살펴보고, 이들 간의 연관성을 파악하고자 하였다. 이를 위해 2019년에 이루어진 대출 도서 984,790권의 한국십진분류기호를 활용하여 같은 날 동일한 이용자에 의해 대출된 도서 목록의 집합인 동시 대출 건수 22,443,699에 대해 ITEM2VEC 기법을 적용하여 분류기호를 벡터로 변환하였다. 다음으로 연관성이 높은 분류기호를 10개씩 추출하였으며, 총 522개의 분류기호를 활용하여 네트워크를 생성하였다. 네트워크에서는 15개 커뮤니티를 식별하였으며, 커뮤니티별 주요 특성을 파악하였다. 15개의 커뮤니티 가운데 두 개 이상의 주류로 구성된 커뮤니티에서는 요목 수준에서 의미 있는 주제적 연관성을 파악할 수 있었다. 본 연구는 이용자의 도서 이용행위에 기초하여 함께 대출될 가능성이 있는 자료의 주제를 파악한 것으로 도서관 장서 구성 및 배치, 관련 주제 분야 자료 추천, 분류표 개정 등에 유익한 시사점을 제공할 수 있을 것이다.
There has been research to understand users’ information behaviors using book circulation data of public libraries. In this study, we examined the subject areas of books simultaneously borrowed by users of public libraries and aimed to identify the relationships among the subject areas. To accomplish this, we utilized the Korean Decimal Classification codes of 984,790 loaned books in 2019 to transform the lists of concurrently borrowed books, totaling 22,443,699 records, by the same users on the same day, into vectors using the ITEM2VEC technique. Next, we extracted ten highly related classification codes for each classification code, utilizing a total of 522 classification codes to create a network. We identified 15 communities within this network and examined the characteristics of each community. Among the 15 communities, those consisting of two or more main classes allowed us to identify meaningful thematic associations. This study, grounded in users’ book usage behaviors, has suggested the topics of books that could be borrowed together. The findings offer valuable insights for library collection development and placement, recommending related subject materials, and revising classification systems.