바로가기메뉴

본문 바로가기 주메뉴 바로가기

An Experimental Study Investigating the Retrieval Effectiveness of a Video Retrieval System Using Tag Query Expansion

Journal of the Korean Society for Library and Information Science / Journal of the Korean Society for Library and Information Science, (P)1225-598X; (E)2982-6292
2010, v.44 no.4, pp.75-94
https://doi.org/10.4275/KSLIS.2010.44.4.075

Abstract

This study designed a pilot system in which queries can be expanded through a tag ontology where equivalent, synonymous, or related tags are bound together, in order to improve the retrieval effectiveness of videos. We evaluated the proposed pilot system by comparing it to a tag-based system without tag control, in terms of recall and precision rates. Our study results showed that the mean recall rate in the structured folksonomy-based system was statistically higher than that in the tag-based system. On the other hand, the mean precision rate in the structured folksonomy-based system was not statistically higher than that in the tag-based system. The result of this study can be utilized as a guide on how to effectively use tags as social metadata of digital video libraries.

keywords
텍사노미, 폭소노미, 태그, 비디오, 질의 확장, 시맨틱 검색, Structured Folksonomy, Relevance Judgment, Recall, Precision, Tag Gardening, Structured Folksonomy, Relevance Judgment, Recall, Precision, Tag Gardening

Reference

1.

김민경. 2009. 폭소노미를 활용한 이미지 검색의 효율성 개선 방안에 관한 연구 . 석사학위 논문. 명지대학교 대학원, 문헌정보학과.

2.

김현희, 김용호. 2010. 구조화된 소셜 메타데이터를 활용한 이미지 자료의 시맨틱 검색에 관한 실험적 연구. 한국문헌정보학회지 , 44(1): 117-135.

3.

김현희, 김민경. 2009. 플리커 이미지 자료에 대한 이용자 태깅 행태 분석과 활용 방안. 정보관리연구 , 40(2): 71-94.

4.

한승희. 2009. 집단지성을 활용한 시소러스 갱신에 관한 연구. 정보관리학회지 , 26(3): 25-43.

5.

Cattuto, C. et al. 2008. “Semantic analysis of tag similarity measures in collaborative tagging systems." In Proceedings of the 3rd Workshop on Ontology Learning and Population (OLP3), Stroudsburg, PA.

6.

Fellbaum, C. 1998. WordNet: An Electronical Lexical Database. Cambridge, MA: The MIT Press.

7.

Furnas, G. W., et al. 1987. “The vocabulary problem in human-system communication." Communications of the ACM, 30(11): 964-971.

8.

Hayman, S. 2007. “Folksonomies and tagging: New developments in social bookmarking." Proceedings of the Ark Group Conference: Developing and Improving Classification Schemes. [online]. [cited]. <http://www.educationau.edu.au//jahia/webdav/site/myjahiasite/shared/papers/arkhayman.pdf>.

9.

Heckner, M., et al. 2008. “Tree, funny, to_read, google: are tags supposed to achieve? a comparative analysis of user keywords for different digital resource types." In Proceeding of the 2008 ACM workshop on Search in social media, 26-30 October 2008. Napa Valley, California, USA.

10.

Heymann, P., Koutrika, G., & Garcia-Molina, H. 2008. “Can social bookmarking improve web search?" In Proceedings of the International Conference on Web Search and Web Data Mining. NewYork: ACM Press. 195-206. <http://ilpubs.stanford.edu:8090/858/1/2008-2.pdf>.

11.

Iyer, H. and Lewis, C. D. 2007. Prioritization strategies for video storyboard keyframes. Journal of American Society for Information Science and Technology, 58(5): 629-644.

12.

Governor, J. 2006. “On the emergence of professional tag gardeners." In Blog Posted 1 October 2006. [online]. [cited 2008. 8. 5]. <http://www.redmonk.com/jgovernor/2006/01/10/on-the-emergence-of-professional-taggardeners/>.

13.

Geisler, G., & Burns, S. 2007. “Tagging video: Conventions and strategies of the YouTube community." In Proceedings of the Joint Conference on Digital Libraries (JCDL 2007), 480.

14.

Greenberg, J. 2001. “Automatic query expansion via lexical-semantic relationships." Journal of the American Society for Information Science and Technology, 52(5): 402-415.

15.

Kolbitsch, J. 2007. “WordFlickr: A solution to the vocabulary problem in social tagging systems." In Proceedings of I-MEDIA '07 and I-SEMANTICS '07, Sept 2007. Graz, Austria.

16.

Krovetz R., & Croft W. 1992. “Lexical ambiguity and information retrieval." ACM transactions on Information Systems, 10(2): 115-141.

17.

Laniado, D., et al. 2007a. “A semantic tool to support navigation in a folksonomy." In Proceedings of the eighteenth conference on Hypertext and hypermedia, Manchester, UK.

18.

Laniado, D., et al. 2007b. “Using WordNet to turn a folksonomy into a hierarchy of concepts." In Semantic Web Application and Perspectives - Fourth Italian Semantic Web Workshop, Dec 2007. 192-201.

19.

Marchionini, G., et al. 2009. “Multimedia surrogates for video gisting: Toward combining spoken words and imagery." Information Processing and Management, 45(2009): 615-630.

20.

Manning, C., et al. 2008. Introduction to information retrieval. Cambridge, England: Cambridge University Press.

21.

Mandala, R., Tokunaga, T., & Tanoka, H. 1999. “Combining multiple evidence from different types of thesaurus for query expansion." In Proceedings of the 22nd Annual International ACMISIGIR Conference on Research and Development in Information Retrieval, 191-197.

22.

Mathes, A. 2004. “Folksonomies - cooperative classification and communication through shared metadata." [online]. [cited 2010. 3. 7]. <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.1000&rep=rep1&type=pdf>.

23.

Matusiak, Krystyna K. 2006. “Towards user-centered indexing in digital image collections.” OCLC Systems & Services: International digital library, 22(4): 283-298.

24.

Melenhorst, M. et al. 2008. “Tag-based information retrieval for educational videos." EBU TECHNICAL REVIEW, 2008Q2.

25.

Ménard, E. 2007. “Image Indexing: How Can I Find a Nice Pair of Italian Shoes?" Bulletin of the American Society for Information Science and Technology, 34(1): 21-25.

26.

Morrison, J. 2008. “Tagging and searching: Search retrieval effectiveness of folksonomies on the World Wide Web.” Information Processing and Management, 44: 1562-1579.

27.

Panofsky, E. 1955. Meaning in the visual arts: Meaning in and on art history. Chicago: University Of Chicago Press.

28.

Peters, I. 2009. Folksonomies: Indexing and Retrieval in Web 2.0. Berlin: De Gruyter.

29.

Peters, I. & Weller, K. 2009. “Tag gardening for folksonomy enrichment and maintenance." Webology, 5(3). [online]. [cited 2010. 3. 3]. <http://www.alt.phil-fak.uni-duesseldorf.de/infowiss/admin/public_dateien/files/35/1227876254tag_garden.pdf>.

30.

Sharma, A. S., & Elidrisi, M. 2008. “Classification of multi-media content (videos on YouTube) using tags and focal points." [online]. [cited 2010. 3. 3]. <http://www-users.cs.umn.edu/~ankur/FinalReport_PR-1.pdf>.

31.

Siersdorfer, S., Pedro, J. S., & Sanderson, M. 2009. “Automatic video tagging using content redundancy." In Proceeding of 32nd ACM SIGIR Conference, Boston, USA.

32.

Smith, G. 2008. Tagging: People-powered metadata for the social Web. Berkeley: New Riders.

33.

Song, Y. and Marchionini, G. 2007. “Effects of audio and visual surrogates for making sense of digital video." In Proceedings of CHI 2007, San Jose, CA, USA. 867-876.

34.

Specia, L., & Motta, E. 2007. “Integrating folksonomies with the semantic web." Edited by Franconi, E., Kifer, M, & May, W. ESWC2007, LNCS, 4519: 624-639.

35.

Steele, T. 2009. “The new cooperative cataloging.” Library Hi Tech, 27(1): 68-77.

36.

Weller, K. 2007. “Folksonomies and ontologies: Two new players in indexing and knowledge representation." H. Jezzard (Hrsg.): Applying Web 2.0. In Proceeding of Innovation, Impact and Implementation. Online Information 2007 Conference, London.

37.

Yang, M. & Marchionini, G. 2004. “Exploring Users' Video Relevance Criteria - A Pilot Study." In Proceedings of the Annual Meeting of the American Society of Information Science and Technology, 12-17 Nov 2004. Providence, RI. 229-238.

38.

Yi, K. 2009. “A study of evaluating the value of social tags as indexing terms." In Proceedings of the Sixth International Conference on Knowledge Management, [CD-ROM]. Singapore: World Scientific Publishing.

39.

Yi, K., & Chan, L. M. 2009. “Linking folksonomy to Library of Congress subject headings: an exploratory study." Journal of Documentation, 65(6): 872-900.

Journal of the Korean Society for Library and Information Science