바로가기메뉴

본문 바로가기 주메뉴 바로가기

A Study on the Perceptions of University Researchers on Data Management and Sharing

Journal of the Korean Society for Library and Information Science / Journal of the Korean Society for Library and Information Science, (P)1225-598X; (E)2982-6292
2015, v.49 no.3, pp.413-436
https://doi.org/10.4275/KSLIS.2015.49.3.413

Abstract

This study aimed to investigate data management practices of university researchers in Korea, as well as their experiences and perceptions of data sharing and reuse. For this purpose, it performed semi-structured interviews of 13 researchers who agreed to participate in interviews followed by a survey conducted prior to this study. The interview participants created or collected research data with various types and formats, and only a few conducted data documentation while they recognized its significance. The majority of participants perceived the period that data would be useful as the period that data can be employed for publications. However, most participants wanted to preserve data beyond the period that data would be considered useful and it indicates they have no small need for data storage and preservation. Participants usually shared data with those whom they have known, such as a personal research group or a research team. While some completely agree with the principle that publicly-funded data should be open to the public, others partially agreed or disagreed with it. Most participants were concerned about being scooped, plagiarism, and maintaining the first right to publish and incentives to mitigate the concerns would be necessary.

keywords
Data Management, Data Sharing, Data Reuse, University Researchers, 데이터관리, 데이터공유, 데이터재이용, 대학 연구자

Reference

1.

김문정, 김성희. 2015. 과학기술분야 연구자의 연구데이터 공유의 영향요인에 대한 연구. 한국문헌정보학회지, 49(2), 313-334.

2.

김은정, 남태우. 2012. 연구데이터 수집에 영향을 미치는 요인 분석. 정보관리학회지, 29(2), 27-44.

3.

Akers, K. G., and Doty, J. 2013. Disciplinary differences in faculty research data management practices and perspectives. International Journal of Digital Curation, 8(2), 5-26.

4.

Alexogiannopoulos, E., McKenney, S., and Pickton, M. 2010. Research Data Management Project: a DAF investigation of research data management practices at The University of Northampton. Northampton: The University of Northampton. [online] [cited 2015. 7. 15.]<http://nectar.northampton.ac.uk/2736/1/Alexogiannopoulos20102736.pdf>

5.

Association of Research Libraries. 2014. Open Scholarship. Washington D. C., US: Association of Research Libraries. [online] [cited 2015. 7. 15.]<http://www.arl.org/focus-areas/open-scholarship#.VaXCyKNWFMt>

6.

Borgman, C. L. 2012. The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059-1078.

7.

Borgman, C. L. 2015. Big Data, Little Data, No Data: Scholarship in the Networked World. Cambridge, MA: MIT Press.

8.

Borgman, C. L., Wallis, J. C., and Enyedy, N. 2007. Little science confronts the data deluge:habitat ecology, embedded sensor networks, and digital libraries. International Journal on Digital Libraries, 7(1-2), 17-30.

9.

Corti, L. et al. 2014. Managing and sharing research data: A guide to good practice. London:SAGE Publications.

10.

Cragin, M. H. et al. 2010. Data sharing, small science and institutional repositories. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368(1926), 4023-4038.

11.

Ekmekcioglu, C., and Rice, R. 2009. Edinburgh Data Audit Implementation Project. Scotland:The University of Edinburgh. [online] [cited 2015. 7. 15.]<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.6624&rep=rep1&type=pdf>

12.

Georgia Tech Library. 2013. Cataloging Metadata Template. Atalanta: Georgia Tech Library. [online] [cited 2015. 7. 15.] <http://d7.library.gatech.edu/research-data/metadata>

13.

Goben, A., and Salo, D. 2013. Federal research: Data requirements set to change. College and Research Libraries News, 74(8), 421-425. [online] [cited 2015. 7. 15.]<http://crln.acrl.org/content/74/8/421.full#ref-17>

14.

Karasti, H., Baker, K. S., and Millerand, F. 2010. Infrastructure Time: Long-term Matters in Collaborative Development." Computer Supported Cooperative Work-the Journal of Collaborative Computing, 19(3-4), 377-415.

15.

Kim, Y., and Stanton, J. M. 2012. Institutional and individual influences on scientists’ data sharing practices. Journal of Computational Science Education, 3(1), 47-56.

16.

Lynch, C. 2008. Big data: How do your data grow? Nature, 455(7209), 28-29.

17.

Molloy, J. C. 2011. The open knowledge foundation: open data means better science. PLoS Biology, 9(12). [online] [cited 2015. 7. 15.]<http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001195>

18.

National Science Foundation. 2013. Chapter VI - Other Post Award Requirements and Considerations. National Science Foundation. Ann Arbor: National Science Foundation. [online] [cited 2015. 7. 15.]<http://www.nsf.gov/pubs/policydocs/pappguide/nsf13001/aag_6.jsp#VID4>

19.

Open Exeter Project Team. 2012. Summary Findings of the Open Exeter Data Asset Framework (DAF) Survey. Exeter: The University of Exeter. [online] [cited 2015. 7. 15.]<http://hdl.handle.net/10036/3689>

20.

Parsons, T., Grimshaw, S., and Williamson, L. 2013. Research data management survey:report. Nottingham: The University of Nottingham. [online] [cited 2015. 7. 15.]<http://eprints.nottingham.ac.uk/1893/>

21.

Saltz, J. et al. 2006. caGrid: Design and implementation of the core architecture of the cancer biomedical informatics grid. Bioinformatics, 22(15), 1910-1916.

22.

Scaramozzino, J. M., Ramírez, M. L., and McGaughey, K. J. 2011. A study of faculty data curation behaviors and attitudes at a teaching-centered university. College & Research Libraries, 73(4), 349-365.

23.

Wallis, J. C., Rolando, E., and Borgman, C. L. 2013. If we share data, will anyone use them? Data sharing and reuse in the long tail of science and technology. PloS one, 8(7). [online][cited 2015. 7. 15.]<http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067332>

24.

Wellcome Trust. 2014. Establishing Incentives and Changing Cultures to Support Data Access. London: Wellcome Trust. [online] [cited 2015. 7. 15.]<http://www.wellcome.ac.uk/stellent/groups/corporatesite/@msh_peda/documents/web_do cument/wtp056495.pdf>

25.

Westra, B. 2010. Data services for the sciences: A needs assessment. Ariadne, 64. [online][cited 2015. 7. 15.] <http://www.ariadne.ac.uk/issue64/westra>

26.

Whyte, A., and Pryor, G. 2011. Open science in practice: Researcher perspectives and participation. International Journal of Digital Curation, 6(1), 199-213.

27.

Williams, S. C. 2013. Data sharing interviews with crop sciences faculty: why they share data and how the library can help. Issues in Science and Technology Librarianship, 72. [online] [cited 2015. 7. 15.]<http://www.istl.org/13-spring/refereed2.html?utm_source=dlvr.it&utm_medium=twitter>

Journal of the Korean Society for Library and Information Science