바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1225-598X
  • E-ISSN2982-6292

네트워크 분석과 동적 토픽모델링을 활용한 국내 인공지능 분야 연구동향 분석

Analyzing Research Trends of Domestic Artificial Intelligence Research Using Network Analysis and Dynamic Topic Modelling

한국문헌정보학회지 / Journal of the Korean Society for Library and Information Science, (P)1225-598X; (E)2982-6292
2021, v.55 no.4, pp.141-157
https://doi.org/10.4275/KSLIS.2021.55.4.141
정우진 (성균관대학교)
오찬희 (성균관대학교)
주영준 (성균관대학교)

초록

본 연구는 국내 인공지능 분야 연구동향을 파악하기 위해 국내 학술지에 발표된 인공지능 분야 논문들을 대상으로 네트워크 분석 및 동적 토픽 모델링 분석을 진행하였다. 2020년까지 KCI(한국학술지인용색인)에 등록된 논문 중 ‘인공지능’과 ‘artificial intelligence’ 두 개의 키워드 중 하나 또는 하나 이상이 논문 제목 또는 색인 키워드에 포함한 2,552개 논문들의 메타데이터 및 초록을 수집하였다. 키워드, 소속기관, 주제 분야, 초록의 추출 및 전처리 작업을 진행하였고 키워드를 활용한 키워드 동시 출현 네트워크 구축 및 분석으로 국내 인공지능 분야의 주요 키워드를 확인하였으며, 소속기관 정보를 활용한 기관 협력 네트워크를 통해 국내외 산학기관들의 협력 정 도 및 특징을 파악하였다. 또한 연구 대상 논문들 중 한글로 작성된 1845개의 초록 들을 대상으로 동적 토픽 모델링을 진행하였으며, 주제어들을 토대로 13개의 주제를 레이블링하였다. 레이블링 된 13개의 주제를 통해 국내 인공지능 연구 분야의 시기별 주제 동향을 파악하였다. 본 연구는 기존의 선행연구들에서 시도하지 않은 저자 소속기관 등을 활용한 기관 협력 네트워크 및 초록을 활용한 동적 토픽 모델링을 통해 국내 인공지능 분야 연구동향 파악의 시야를 확장하는 것으로 학술적 의의를 지닌다. 또한, 본 연구의 결과가 인공지능 시대에 부합하는 국가 정책 수립 기여라는 실질적 함의를 시사한다.

keywords
인공지능, 연구동향 분석, 네트워크 분석, 동적 토픽 모델링, Artificial Intelligence, Research Trends Analysis, Network Analysis, Dynamic Topic Modeling

Abstract

In this study, we aimed to understand research trends of domestic artificial intelligence research. To achieve the goal, we applied network analysis and dynamic topic modeling to domestic research papers on artificial intelligence. Among the papers that have been indexed in KCI (Korean Journal of Citation Index) by 2020, metadata and abstracts of 2,552 papers where the titles or indexed keywords include ‘artificial intelligence’ both in Korean and English were collected. Keyword, affiliation, subject field, and abstract were extracted and preprocessed for further analyses. We identified main keywords in the field by analyzing keyword co-occurrence networks as well as the degree and characteristics of research collaboration between domestic and foreign institutions and between industry and university by analyzing institutional collaboration networks. Dynamic topic modeling was performed on 1845 abstracts written in Korean, and 13 topics were obtained from the labeling process. This study broadens the understanding of domestic artificial intelligence research by identifying research trends through dynamic topic modeling from abstracts as well as the degree and characteristics of research collaboration through institutional collaboration networks from author affiliation information. In addition, the results of this study can be used by governmental institutions for making policies in accordance with artificial intelligence era.

keywords
인공지능, 연구동향 분석, 네트워크 분석, 동적 토픽 모델링, Artificial Intelligence, Research Trends Analysis, Network Analysis, Dynamic Topic Modeling

한국문헌정보학회지