ISSN : 1225-598X
This study investigates user behavior in library spaces through the lens of AI camera analytics. By leveraging the face recognition and tracking capabilities of AI cameras, we accurately identified the gender and age of visitors and meticulously collected video data to track their movements. Our findings revealed that female users slightly outnumbered male users and the dominant age group was individuals in their 30s. User visits peaked between Tuesday to Friday, with the highest footfall recorded between 14:00 and 15:00 pm, while visits decreased over the weekend. Most visitors utilized one or two specific spaces, frequently consulting the information desk for inquiries, checking out/returning items, or using the rest area for relaxation. The library stacks were used approximately twice as much as they were avoided. The most frequented subject areas were Philosophy(100), Religion(200), Social Sciences(300), Science(400), Technology(500), and Literature(800), with Literature(800) and Religion(200) displaying the most intersections with other areas. By categorizing users into five clusters based on space utilization patterns, we discerned varying objectives and subject interests, providing insights for future library service enhancements. Moreover, the study underscores the need to address the associated costs and privacy concerns when considering the broader application of AI camera analytics in library settings.