ISSN : 1225-598X
In this study, as a preliminary research to effectively support data-driven R&D of researchers, we analyzed the academic information and data requirements for researchers to discover new types of academic information and datasets, and to propose directions for academic information services. To achieve the research objectives, we conducted an exploratory case study involving five researchers and administered an online survey among ScienceON users to glean insights into data-driven R&D behaviors and information/data requirements. As a result, researchers relatively referred to academic papers, datasets and software information from academic papers or conference materials. Moreover, the methods and pathways for acquiring data, as well as the types of data, varied across different subject areas. Researchers often faced challenges in data-driven R&D due to difficulties in locating and accessing necessary datasets or software such as learning models. Therefore it has been analyzed that for future support of data-driven R&D, there is a need to systematically construct datasets by subject. Additionally, it is considered necessary to extract and summarize dataset and related software information in conjunction with academic papers.