바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1225-598X
  • E-ISSN2982-6292

LDA, Top2Vec, BERTopic 모형의 토픽모델링 비교 연구 - 국외 문헌정보학 분야를 중심으로 -

A Comparative Study on Topic Modeling of LDA, Top2Vec, and BERTopic Models Using LIS Journals in WoS

한국문헌정보학회지 / Journal of the Korean Society for Library and Information Science, (P)1225-598X; (E)2982-6292
2024, v.58 no.1, pp.5-30
https://doi.org/10.4275/KSLIS.2024.58.1.005
이용구(Yong-Gu Lee) (경북대학교)
김선욱(SeonWook Kim) (대구가톨릭대학교 문헌정보학과 강사)

초록

이 연구는 토픽모델링 모형인 LDA, Top2Vec, BERTopic을 대상으로 실험데이터에서 토픽을 추출하고, 그 결과를 비교 분석함으로써 각각의 모형 간의 특성과 차이를 파악하는데 목적이 있다. 실험데이터는 Web of Science(WoS)에 등재된 문헌정보학 분야 학술지 85종에 게재된 논문 55,442편을 대상으로 하였다. 실험 과정으로 우선 각 모형의 파라미터를 기본값 그대로 이용하여 1차 토픽모델링 결과를 얻었고, 최적의 토픽 수를 설정하여 각 모형의 2차 토픽모델링 결과를 얻었으며, 이들을 각 모형과 단계별로 비교분석하였다. 1차 토픽모델링 단계에서는 LDA, Top2Vec, BERTopic 모형이 각각 100개, 350개, 550개의 토픽을 생성하여 세 모형은 각각 매우 다른 크기의 토픽 개수를 가져왔으며, LDA 모형에 비해 Top2Vec이나 BERTopic 모형이 토픽을 3배, 5배 더 세분화하였다. 또한 세 모형은 토픽 당 문서 수의 평균이나 표준편차에서도 많은 차이가 났다. 구체적으로 LDA 모형은 비교적 적은 수의 토픽에 많은 문서를 부여하는 반면, BERTopic 모형은 반대의 경향을 보였다. 25개의 토픽 수를 생성하는 2차 토픽모델링 단계에서는 다른 모형에 비해 Top2Vec 모형이 평균적으로 토픽 당 많은 문서를 부여하고 토픽 간에 고르게 문서를 할당하여 상대적으로 편차가 작았다. 또한 모형간의 유사 토픽의 생성여부를 비교하면, LDA와 Top2Vec 모형이 전체 25개 중에 18개(72%)의 공통된 토픽을 생성하여 BERTopic 모형에 비해 두 모형이 더 유사한 결과를 보였다. 향후 토픽모델링 결과에서 각 토픽과 부여된 문서들이 주제적으로 올바르게 형성되었는지에 대한 전문가의 평가를 통해 보다 완전한 분석이 필요하다.

keywords
토픽모델링, LDA, Top2Vec, BERTopic, 문헌정보학

Abstract

The purpose of this study is to extract topics from experimental data using the topic modeling methods(LDA, Top2Vec, and BERTopic) and compare the characteristics and differences between these models. The experimental data consist of 55,442 papers published in 85 academic journals in the field of library and information science, which are indexed in the Web of Science(WoS). The experimental process was as follows: The first topic modeling results were obtained using the default parameters for each model, and the second topic modeling results were obtained by setting the same optimal number of topics for each model. In the first stage of topic modeling, LDA, Top2Vec, and BERTopic models generated significantly different numbers of topics(100, 350, and 550, respectively). Top2Vec and BERTopic models seemed to divide the topics approximately three to five times more finely than the LDA model. There were substantial differences among the models in terms of the average and standard deviation of documents per topic. The LDA model assigned many documents to a relatively small number of topics, while the BERTopic model showed the opposite trend. In the second stage of topic modeling, generating the same 25 topics for all models, the Top2Vec model tended to assign more documents on average per topic and showed small deviations between topics, resulting in even distribution of the 25 topics. When comparing the creation of similar topics between models, LDA and Top2Vec models generated 18 similar topics(72%) out of 25. This high percentage suggests that the Top2Vec model is more similar to the LDA model. For a more comprehensive comparison analysis, expert evaluation is necessary to determine whether the documents assigned to each topic in the topic modeling results are thematically accurate.

keywords
Topic Modeling, LDA, Top2Vec, BERTopic, Library and Information Science

한국문헌정보학회지